Nav: Home

Study offers guidance on how to protect olive trees from being ravaged by deadly pathogen

February 24, 2017

Expert ecologists at the UK-based Centre for Ecology & Hydrology (CEH) have devised a scientific model which could help predict the spread of the deadly Xylella fastidiosa which is threatening to destroy Europe's olive trees.

The CEH scientists have created a model which is able to qualitatively and quantitatively predict how the deadly bacterial pathogen may spread as well as offer guidance on how buffer zones should be arranged to protect uninfected olive trees.

The research, published in the journal Biological Invasions, highlights how Xylella fastidiosa is influenced by a range of insects - including spittlebugs - and the rate to which these vectors contribute to the potential spread of the disease across Europe and beyond.

Xylella fastidiosa was once restricted to the Americas but was discovered near Lecce, Italy, in 2013. Since the initial outbreak it has invaded over 23,000 ha of olives in the Apulian Region of southern Italy, and is of great concern throughout the olive production areas of the Mediterranean basin.

The study modelled control zones currently employed in Apulia, Italy, and found that increasing buffer widths decreased infection risk beyond the control zone but may not stop the spread completely.

This was due to the ability of the disease-spreading insects to transport themselves between sites.

Lead author Dr Steven White, a Theoretical Ecologist at the Centre for Ecology & Hydrology, said the model indicates the importance of control strategies reducing the risk of the disease-spreading insects infecting healthy trees through the use of wider buffer zones.

Dr White said, "At these early stages of Xylella fastidiosa invasion, little is known about the rates of spread of this terrible disease of olive trees and how best to control it. This is largely due to biological and environmental differences between where the strain is invading and where it has originated.

"Based on current surveillance work in Apulia, Italy, we have constructed a simple mechanistic model which attempts to replicate the pattern of disease spread. Then, building upon this model, we investigated the efficacy of the buffer zone control programme.

"In doing so, this work provides policy makers with scientific information about how the disease might progress and how the control strategies imposed by the European Union may reduce the risk of spread to the rest of Italy and beyond."

Co-author, Dr Daniel Chapman, a Plant Community Ecologist at the Centre for Ecology & Hydrology, said, "The emergence of novel invasive plant diseases such as Xylella fastidiosa in olives is an increasing threat. Our study shows that simple models can help to plan disease management strategies in the early stages of an epidemic.

"Thanks to new funding from the European Union, we will be further developing the approach to provide specific guidance on surveillance, containment and even eradication of new outbreaks."
-end-
The research, funded by the European Food Safety Authority (EFSA) and the Natural Environment Research Council (NERC), also recommends that while many aspects of the Xylella fastidiosa invasion remain uncertain and hinder forecasting, future studies should investigate quantification of the infection growth rate as well as short and long term distance dispersal.

Notes to editors

Contact details

For interview requests and images contact Wayne Coles, Media Relations Officer, Centre for Ecology & Hydrology, UK, Mobile: +44 (0)7920 2955384, Email: wcoles@ceh.ac.uk

Lead author, Dr Steven White, Theoretical Ecologist, Centre for Ecology & Hydrology, UK, Office: +44 (0)1491 692699, Email: smwhit@ceh.ac.uk

Co-author, Dr Daniel Chapman, Plant Community Ecologist, Centre for Ecology & Hydrology, UK, Office: +44 (0)131 4458549

Paper reference

Steven M. White, James M. Bullock, Danny A.P. Hooftman, Daniel S. Chapman, 2017, 'Modelling the spread and control of Xylella fastidiosa in the early stages of invasions in Apulia, Italy,' Biological Invasions, published online 21 February 2017. Doi: 10.1007/s10530-017-1393-5

The paper is available as an open access document via this URL: http://link.springer.com/article/10.1007/s10530-017-1393-5

Photograph

A photograph of an olive tree infected with Xylella fastidiosa in Apulia, Italy, is available via the CEH Dropbox: https://www.dropbox.com/s/dffyx70yv6jzt4u/Xylella%20fastidiosa%20in%20olive%20tree.jpg?dl=0

The Centre for Ecology & Hydrology (CEH) is the UK's Centre of Excellence for integrated research in the land and freshwater ecosystems and their interaction with the atmosphere. CEH is part of the Natural Environment Research Council, employs more than 450 people at four major sites in England, Scotland and Wales, hosts over 150 PhD students, and has an overall budget of about £35m. CEH tackles complex environmental challenges to deliver practicable solutions so that future generations can benefit from a rich and healthy environment. You can follow the latest developments in CEH research via @CEHScienceNews on Twitter

Centre for Ecology & Hydrology

Related Insects Articles:

New information on tropical parasitoid insects revealed
The diversity and ecology of African parasitoid wasps was studied for over a year during a project run by the Biodiversity Unit of the University of Turku in Finland.
Insects need empathy
In February, environmentalists in Germany collected 1.75 million signatures for a 'save the bees law.' Citizens can stop insect declines by halting habitat loss and fragmentation, producing food without pesticides and limiting climate change, say the authors of this Perspectives piece in Science.
Migratory hoverflies 'key' as many insects decline
Migratory hoverflies are 'key' to pollination and controlling crop pests amid the decline of many other insect species, new research shows.
We now know how insects and bacteria control ice
in a paper published today in the Journal of the American Chemical Society University of Utah professor Valeria Molinero and her colleagues show how key proteins produced in bacteria and insects can either promote or inhibit the formation of ice, based on their length and their ability to team up to form large ice-binding surfaces.
Widespread losses of pollinating insects in Britain
Many insect pollinator species are disappearing from areas of Great Britain, a new study has found.
More Insects News and Insects Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...