Nav: Home

Having an eye for colors: Printable light sensors

February 24, 2020

Cameras, light barriers, and movement sensors have one thing in common: They work with light sensors that are already found in many applications. In future, these sensors might also play an important role in telecommunications, as they enable data transmission via light. At the InnovationLab in Heidelberg, scientists of Karlsruhe Institute of Technology (KIT) succeeded in making decisive progress: Printable light sensors that can see colors. The results are now reported in Advanced Materials (DOI: 10.1002/adma.201908258).

New technologies will increase the demand for optical sensors for a variety of applications, including visible light communication (VLC). VLC uses interior lighting of buildings for optical communication. In terms of security, speed, and accessibility, this technology has a number of advantages over conventional transmission processes, such as WLAN or Bluetooth. "Our research is based on the idea of combining the advantages of a special type of materials, namely, organic semiconductors, and their production by printing processes," says Dr. Gerardo Hernandez-Sosa of KIT's Light Technology Institute, one of the authors of the publication.

Semiconductors are the basis of computers, smartphones, solar cells, and many other technologies. Some of the semiconducting materials react to light by changing their conductivity. Light intensity can be measured as electrical current. Using a printer, some materials can be applied to a carrier material like printing ink. These materials react to varying wavelengths, which means that they can distinguish colors. The team of Hernandez-Sosa has now succeeded in finding a composition of materials suited for use as wavelength-sensitive light detector as well as for printing onto flexible carriers. Printing can be performed on very small to very large areas. The layout can be designed easily with the help of a computer. "High numbers of these photodetectors of any design can be produced on flexible, light materials. Hence, they are particularly suited for mobile devices," first author Noah Strobel points out.

Printing of semiconductor components is a relatively young process, but has a considerable potential for future applications. Industry is already making large investments in the production of printed OLED displays for TVs and smartphones. Printed flexible solar cells or pressure sensors are commercially available already. Production of printed light detectors has also reached the industrial scale. It is therefore highly probable that these elements will be used in many applications in future, even more so, as the demand for sensors is increasing in the internet of things, in smart cities, and in Industry 4.0.
-end-
Original Publication:

Noah Strobel, Nikolaos Droseros, Wolfgang Köntges, Mervin Seiberlich, Manuel Pietsch, Stefan Schlisske, Felix Lindheimer, Rasmus R. Schröder, Uli Lemmer, Martin Pfannmöller, Natalie Banerji, Gerardo Hernandez-Sosa: "Color-selective Printed Organic Photodiodes for Filterless Multichannel Visible Light Communication." Advanced Materials, 2020. DOI: 10.1002/adma.201908258. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201908258

More about the KIT Center Materials in Technical and Life Sciences: http://www.materials.kit.edu/index.php

Being "The Research University in the Helmholtz Association", KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

Karlsruher Institut für Technologie (KIT)

Related Solar Cells Articles:

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.