Nav: Home

Directing nanoparticles straight to tumors

February 24, 2020

Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue. An interdisciplinary team of researchers at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and FU Berlin has made important progress in this area: the scientists have produced tiny nanoparticles that are designed to specifically target cancer cells. They can navigate directly to the tumor cells and visualize those using advanced imaging techniques. Both in petri dishes and animal models, the scientists were able to effectively guide the nanoparticles to the cancer cells. The next step is to combine the new technique with therapeutic approaches.

The HZDR researchers start out with tiny, biocompatible nanoparticles made of so-called dendritic polyglycerols that serve as carrier molecules. "We can modify these particles and introduce various functions," explains Dr. Kristof Zarschler, research associate at HZDR's Institute of Radiopharmaceutical Cancer Research. "For example, we can attach an antibody fragment to the particle that specifically binds to cancer cells. This antibody fragment is our targeting moiety that directs the nanoparticle to the tumor."

The target of the modified nanoparticles is an antigen known as EGFR (epidermal growth factor receptor). In certain types of cancer, such as breast cancer or head and neck tumors, this protein is overexpressed on the surface of the cells. "We were able to show that our designed nanoparticles preferentially interact with the cancer cells via these receptors," confirms Dr. Holger Stephan, leader of the Nanoscalic Systems Group at HZDR. "In control tests with similar nanoparticles that had been modified with an unspecific antibody, significantly fewer nanoparticles accumulated at the tumor cells."

The scientists intensively studied the nanoparticles' behavior both in cell cultures and in an animal model. For this purpose, they provided the nanoparticles with additional reporter characteristics, as Kristof Zarschler explains: "We used two complementary possibilities. In addition to the antibodies, we attached dye molecules and radionuclides to the nanoparticles. The dye molecule emits in the near infrared spectrum that penetrates the tissue and can be visualized with an appropriate microscope. The dye thus reveals where exactly the nanoparticles are located." The radionuclide, copper-64, fulfils a similar purpose. It emits radiation that is detected by a PET scanner (positron emission tomography). The signals can then be converted into a three-dimensional image that visualizes the distribution of the nanoparticles in the organism.

Excellent properties in living organisms

Using these imaging techniques, researchers have been able to show that nanoparticle accumulation in the tumor tissue reaches maximum two days after administration to mice. The labelled nanoparticles are subsequently eliminated via the kidneys without being a burden for the body. "They are apparently ideal in size and properties," says Holger Stephan. "Smaller particles are filtered out of the blood in just a few hours and thus only have a short-term impact. If, on the other hand, the particles are too big, they accumulate in the spleen, liver or lungs and cannot be removed from the body via the kidneys and bladder." The interplay between the nanoparticles with an exact size of three nanometers and the attached antibody fragments evidently has a positive influence on the distribution and retention of the antibody in the organism as well as on its excretion profile.

In future experiments, the HZDR researchers want to test whether they can modify their system to carry other components. Kristof Zarschler describes the plans: "You can take these nanoparticles and functionalize them with an active substance. Then you can deliver a drug directly to the tumor. This might be a therapeutic radionuclide that destroys the tumor cells." It is also possible to attach antibody fragments specific for proteins other than EGFR to target different types of cancer.
-end-
Publication:

K. Pant, C. Neuber, K. Zarschler, J. Wodtke, S. Meister, R. Haag, J. Pietzsch, H. Stephan: Active targeting of dendritic polyglycerols for diagnostic cancer imaging, in Small, 2019 (DOI: 10.1002/smll.201905013)

Additional information:

Dr. Holger Stephan | Dr. Kristof Zarschler
Institute of Radiopharmaceutical Cancer Research at HZDR
Phone: +49 351 260-3091 | -3678
Mail: h.stephan@hzdr.de | k.zarschler@hzdr.de

Media contact:

Simon Schmitt | Science editor
Phone: +49 351 260-3400 | Email: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden / Germany | http://www.hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs - as an independent German research center - research in the fields of energy, health, and matter. We focus on answering the following questions:
  • How can energy and resources be utilized in an efficient, safe, and sustainable way?
  • How can malignant tumors be more precisely visualized, characterized, and more effectively treated?
  • How do matter and materials behave under the influence of strong fields and in smallest dimensions?
To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources.

HZDR is a member of the Helmholtz Association and has five sites (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 170 Ph.D. candidates.

Helmholtz-Zentrum Dresden-Rossendorf

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.