Nav: Home

Targeting hibernating breast cancer cells in the lung could reduce secondary cancers

February 24, 2020

Healthy lung cells support the survival of breast cancer cells, allowing them to hibernate in the lung before forming secondary tumours, according to new research from the Crick. The findings could help the development of new treatments that interfere with this behaviour, reducing the number of secondary cancers.

The study, published in Nature Cell Biology, used a mouse model to show that, after cancer cells from a breast tumour arrive in the lungs, a signal sent out from the lung cells causes cancer cells to change shape and grow protrusions that latch onto the lung tissue. The lung cells then protect them within the lung tissue.

By using a treatment that interferes with the growth of these protrusions on the breast cancer cells, the researchers found that mice who received the treatment grew fewer secondary tumours than the control mice.

The researchers then analysed the genes that are turned on in the hibernating cells. This enabled them to find a key gene, sFRP2, that regulates the formation of cell protrusions and the survival of breast cancer cells in the lung.

"Cancer can survive, hibernating in different parts of the body, for many years. By showing how the microenvironment around the cancer cell can support its survival, in our case how the lung cells help the breast cancer cells, opens the door to potential new treatments which target this relationship," says Erik Sahai, co-lead author and group leader of the Crick's Tumour Cell Biology Laboratory.

The cancer cells were tested over the course of up to four weeks, during which they remained inactive. In comparison, other cell types continued to remain active, showing that the hibernation of these cells is due to a special relationship they have with the lung environment around them.

"The mechanism behind how cancer cells survive in tissues they have travelled to is not yet well understood. But with many cancers spreading around the body and consequently many patients suffering from relapses, a deeper understanding of the process is vital and something we'll continue to explore," says Marco Montagner, co-lead author and former postdoc in the Crick's Tumour Cell Biology Laboratory, who is now based at the University of Padua.

Around 55,000 people in the UK are diagnosed with breast cancer each year. This cancer can spread through the blood or lymphatic system to another part of the body, commonly the lungs, liver, brain or bones. Where breast cancer spreads to the lungs, there can be a long time between the cells arriving in the lungs and the formation of a secondary tumour. This gap is one factor that explains why people may relapse a long time after the initial disease.

The researchers are continuing to explore the relationship between cancer and non-cancerous cells in a secondary location in the body. At the Crick, researchers are now studying what happens when cells from colorectal cancer and melanomas form secondary tumours in the liver. While at the University of Padua, studies are ongoing into the genes which are over-expressed in hibernating breast cancer cells.
-end-


The Francis Crick Institute

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.