Releasing brakes: Potential new methods for Duchenne muscular dystrophy therapies

February 24, 2020

Researchers identified a group of small molecules that may open the door to developing new therapies for Duchenne muscular dystrophy (DMD), an as-yet-uncured disease that results in devastating muscle weakening and loss. The molecules tested by the team from the Perelman School of Medicine at the University of Pennsylvania eased repression of a specific gene, utrophin, in mouse muscle cells, allowing the body to produce more utrophin protein, which can be subbed in for dystrophin, a protein whose absence causes DMD. These findings by were published this month in Scientific Reports.

"We're trying to find therapies that will restore a patient's muscle function without resorting to gene therapy," said the study's senior author Tejvir S. Khurana, MD, PhD, a professor of Physiology and member of the Pennsylvania Muscle Institute. "Increasing utrophin is a major focus of muscular dystrophy research. While, ideally, we would replace the missing dystrophin in patients, there are a number of technical and immunological problems associated with this approach."

Introducing dystrophin through gene therapy is challenging for two main reasons: First, the dystrophin gene is extremely large. It requires extensive down-sizing and conversion into a micro-dystrophin to fit the Adeno-associated viral vectors being used clinically for gene therapy. The second challenge is the immune system. Since the patient's body never produced dystrophin, it interprets the new micro-dystrophin protein as a foreign, hostile invader and attacks, which may lead to adverse events and nullify any benefits.

"We're using an approach that attempts to increase utrophin levels in the body because it has functional characteristics and a genetic structure similar to dystrophin. Since the body already produces it, the immune system recognizes the protein as the body's own and does not attack it or the cells producing it, even when over-expressed," Khurana said.

There have been other attempts to use utrophin as a substitute for dystrophin using drugs, but those methods have focused on boosting utrophin through activating the "promoter," the part of a gene that kick-starts the process of its expression in a person. Using the metaphor of trying to move a car, Khurana said that this approach is like pressing the gas pedal.

However, there are also mechanisms within the body that limit the expression of proteins. It makes simply stimulating more utrophin production similar to pressing a vehicle's gas pedal while the brake is on: there may be some movement, but not a lot.

Khurana and his team, including first author Emanuele Loro, PhD, a Physiology research associate at Penn Medicine, decided to try an approach that would be similar to releasing the parking brake. They believe that by overpowering the repression with drugs, the body would naturally produce more of the utrophin it was already making. The process is referred to as "upregulation," and they hoped it would cover for the missing dystrophin.

The researchers tested a collection -- called a "library" -- of different small molecules in a utrophin cellular assay they developed. Through this, they found 27 promising "hits." After ranking their effectiveness using an algorithm they developed called Hit to Lead Prioritization Score (H2LPS), 10 molecules were extensively tested in muscle cell lines, and the top-scoring molecule, trichostatin A (TSA), was tested in a mouse model of muscular dystrophy where it led to significant improvements in muscle structure and function.

With the molecules they identified, Khurana and his team believe they've found potential ways of developing therapies to treat DMD patients. Testing is still in early stages, but Khurana is very excited about the doors this discovery will open.

"Our next steps here will be to do more screenings to identify new hits using chemically diverse libraries," Khurana said. "This is a completely new approach to increase utrophin for this condition, and we're very keen to test it further and eventually bring it to clinical trials."
The study was funded in part by an Innovation Grants to Nurture Initial Translational Efforts (IGNITE) program grant from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health (R33-NS-102838-02).

Other authors on the study include Katsuri Sengupta, Sasha Bogadanovich, Kanupriya Whig, David C. Schultz, and Donna M. Huryn all at the University of Pennsylvania (Prof. Huryn has appointments at University of Pennsylvania and the University of Pittsburgh).

Disclosure: Khurana & Huryn are co-inventors on a PCT filing and Khurana is the co-inventor on a number of patents on utrophin that are owned and managed by the University of Pennsylvania.

University of Pennsylvania School of Medicine

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to