USask computer-based simulator tests insects for effects of new pesticide

February 24, 2020

SASKATOON--University of Saskatchewan (USask) researchers have used a novel combination of techniques to compare the effects of two families of pesticides used in agriculture, and found that at low dosages the newer pesticide is less toxic than a currently used neonicotinoid one.

USask biology professor Jack Gray's research on locusts, published in the Proceedings of the National Academy of Sciences (PNAS), may have implications for understanding the link between these pesticides and mortality in other species such as the "colony collapse disorder" responsible for the deaths of millions of bees worldwide.

"There is controversy over neonicotinoid pesticides," said Gray. "Their development suggested they were safer than other pesticides, but it is more complicated because their effects at non-lethal doses on insects and other species needed to be investigated further."

From his previous studies with locusts, Gray designed a virtual flight simulator where he tested how non-lethal doses of pesticides can affect the insects' ability to visually detect moving objects such as trees and predators. He and his team found that the newer sulfoxamine pesticide, sulfoxaflor (SFX), does not impair the insects' motion detection ability, while the current neonicotinoid imidacloprid (IMD) does.

"Even though this suggests that SFX isn't as toxic as the other pesticide at low dosages, more testing is needed to establish whether it a safer, preferable option for agriculture use," said Gray.

Gray and his team used an approach that looks at behaviour and neurophysiology, which have seldom been applied together for studying pesticide effects.

The results confirmed that IMD had negative effects on the locusts' ability to jump and escape dangers, while SFX did not. A potential explanation may be that SFX does not bind as strongly to the same receptor that determines the insects' sensitivity to the pesticides.

The USask team chose locusts because their nervous system is well studied, and the neurons that regulate their motion detection are common to a variety of other species including birds, and likely even humans.

"These findings may be applicable to other species to understand how these pesticides affect how fast the nervous system can send information," said Gray.

By using small electrodes in the insect's thorax, former USask PhD student Rachel Parkinson, first author of the paper, measured the electrical signals directly from a neuron in the insect's nervous system that detects visual motion and controls flight.

"The reaction time of locusts treated with the IMD pesticide slows down, impairing their ability to avoid objects," said Parkinson, now a post-doctoral fellow at the University of Oxford. The USask team also includes PhD student Sinan Zhang.
The research is funded by Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, and USask.

University of Saskatchewan

Related Pesticides Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

In pursuit of alternative pesticides
Controlling crop pests is a key element of agriculture worldwide, but the environmental impact of insecticides is a growing concern.

Two pesticides approved for use in US harmful to bees
A previously banned insecticide, which was approved for agricultural use last year in the United States, is harmful for bees and other beneficial insects that are crucial for agriculture, and a second pesticide in widespread use also harms these insects.

Dingoes have gotten bigger over the last 80 years - and pesticides might be to blame
The average size of a dingo is increasing, but only in areas where poison-baits are used, a collaborative study led by UNSW Sydney shows.

Pesticides can protect crops from hydrophobic pollutants
Researchers have revealed that commercial pesticides can be applied to crops in the Cucurbitaceae family to decrease their accumulation of hydrophobic pollutants, thereby improving crop safety.

Honeybee lives shortened after exposure to two widely used pesticides
The lives of honeybees are shortened -- with evidence of physiological stress -- when they are exposed to the suggested application rates of two commercially available and widely used pesticides.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.

SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.

Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.

Read More: Pesticides News and Pesticides Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to