Yale scientist honored for academic innovation and leadership

February 25, 2008

New Haven, Conn. -- Erin Lavik, an assistant professor of biomedical engineering at Yale, was honored recently by the Connecticut Technology Council as one of their 2008 Women of Innovation.

The annual event, now in its fourth year, honors Connecticut women in eight categories for their achievements as small business owners, entrepreneurs, researchers, community leaders and innovators. This year's winners were selected from 105 nominees.

According to Matthew Nemerson, president and chief executive of the Council, the awards help to identify and create a culture of innovation in the state.

Lavik, who was cited for her academic innovation and leadership, focuses her research on developing new therapeutic approaches for the treatment of spinal cord injury and retinal degeneration.

She begins repair of damaged tissues using biodegradable polymers formed into three-dimensional scaffolds that mimic the structure of the tissue. After chemically modifying the scaffold surfaces, she incorporates growth factors that further create an environment for repair.

By combining neural or retinal stem cells with these environments, she is discovering the cues that promote integration and differentiation of the cells into healthy tissue. In a rodent model of spinal cord injury, the seeded scaffold promoted functional recovery allowing the rats to regain a weight-bearing stride. She also collaborated on an implantable system that can form and stabilize a functional network of fine blood vessels critical for supporting tissues in the body.

Lavik is also noted for her leadership, and has played a role in organizing and sustaining the Yale "Science Saturdays" series of workshops for local schoolchildren. The highly successful program introduces middle- and high-school students to Yale scientists who demonstrate the excitement of their research.

Before joining the Yale faculty of Biomedical Engineering in 2003, Lavik earned her Doctorate of Science at the Massachusetts Institute of Technology (MIT). Among her honors, she was named in 2003 a Top Young Innovator by MIT's Technology Review publication for her pioneering work. In 2004, she was nominated for a WIRED Magazine Rave Award as a "leading thinker and doer," and she received an Early Career Award for research from the Coulter Foundation in 2006.
-end-


Yale University

Related Spinal Cord Injury Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.

Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.

Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Read More: Spinal Cord Injury News and Spinal Cord Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.