Found: Ancient, super-bright quasar with massive black hole

February 25, 2015

Washington, D.C.-- Quasars--supermassive black holes found at the center of distant massive galaxies--are the most-luminous beacons in the sky. These central supermassive black holes actively accrete the surrounding materials and release a huge amount of their gravitational energy. An international team of astronomers, including Carnegie's Yuri Beletsky, has discovered the brightest quasar ever found in the early universe, which is powered by the most massive black hole observed for an object from that time. Their work is published February 26 by Nature.

The quasar was found at a redshift of z=6.30. This is a measurement of how much the wavelength of light emitted from it that reaches us on Earth is stretched by the expansion of the universe. As such, it can be used to calculate the quasar's age and distance from our planet. A higher redshift means larger distance and hence looking further back in time.

At a distance of 12.8 billion light years from Earth, this quasar was formed only 900 million years after the Big Bang. Named SDSS J0100+2802, studying this quasar will help scientists understand how quasars evolved in the earliest days of the universe. There are only 40 known quasars have a redshift of higher than 6, a point that marks the beginning of the early universe.

"This quasar is very unique. Just like the brightest lighthouse in the distant universe, its glowing light will help us to probe more about the early universe," said team-leader Xue-Bing Wu of Peking University and the Kavli Institute of Astronomy and Astrophysics.

With a luminosity of 420 trillion that of our own Sun's, this new quasar is seven times brighter than the most distant quasar known (which is 13 billion years away). It harbors a black hole with mass of 12 billion solar masses, proving it to be the most luminous quasar with the most massive black hole among all the known high redshift quasars.

The team developed a method of detecting quasars at redshifts of 5 and higher. These detections were verified by the 6.5-meter Multiple Mirror Telescope (MMT) and 8.4m Large Binocular Telescope (LBT) in Arizona; the 6.5m Magellan Telescope at Carnegie's Las Campanas Observatory in Chile; and the 8.2m Gemini North Telescope in Hawaii.

"This quasar is a unique laboratory to study the way that a quasar's black hole and host galaxy co-evolve," Beletsky said. "Our findings indicate that in the early Universe, quasar black holes probably grew faster than their host galaxies, although more research is needed to confirm this idea."
-end-
Other co-authors on the paper are: FeigeWang, Jinyi Yang, and Qian Yang, also of Peking University and the Kavli Institute; Xiaohui Fan of University of Arizona and the Kavli Institute; Weimin Yi of the Chinese Academy of Sciences; Wenwen Zuo of Peking University and the Chinese Academy of Sciences; Fuyan Bian of Australian National University; Linhua Jiang and RanWang of the Kavli Institute; and Ian D. McGreer and David Thompson of University of Arizona.

This work was funded by the NSFC, the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences, the National Key Basic Research Program of China, and the U.S. NSF.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Black Hole Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.

Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.

Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.

Read More: Black Hole News and Black Hole Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.