Study reveals possible biological trigger for canine bone cancer

February 25, 2015

MADISON, Wis. -- Researchers at the University of Wisconsin-Madison School of Veterinary Medicine (SVM) have identified the biological mechanism that may give some cancer cells the ability to form tumors in dogs.

The recent study uncovered an association between the increased expression of a particular gene in tumor cells and more aggressive behavior in a form of canine bone cancer. It may also have implications for human cancers by detailing a new pathway for tumor formation.

The findings, published online this month in the journal Veterinary and Comparative Oncology, may eventually provide oncologists with another target for therapy and improve outcomes for canine patients with the disease.

The researchers examined cell lines generated from dogs with osteosarcoma, a common bone cancer that also affects people, with the intent of uncovering why only some cells generate tumors. After the dogs underwent tumor-removal surgery at UW Veterinary Care -- the SVM's veterinary medical teaching hospital -- cells from the tumors were grown in the lab.

This led to six different cancer cell lines, which were then transplanted into mice. The researchers then looked to see which lines developed tumors and which did not and studied the differences between them.

"We found several hundred genes that expressed differently between the tumor-forming and nontumor-forming cell lines," says Timothy Stein, an assistant professor of oncology. However, one protein called frizzled-6 was present at levels eight times higher in cells that formed tumors.

In the complicated process of gene expression, the genetic information encoded within DNA is eventually converted into RNA and proteins, which are responsible for a variety of vital cellular functions. Frizzled-6 plays a key role in relaying signals from the outside to the inside of a cell, acting as a sort of receiving dock for particular types of information.

Molecular connections like this activate pathways, some of which regulate the growth, differentiation and migration of cells when working properly. But when pathways go awry, they may contribute to the development of tumors and tumor-initiating cells. The role of frizzled-6 in this process is not yet fully understood.

"It's exciting because it's kind of uncharted territory," says Stein, who is also a member of the UW Carbone Cancer Center. "While we need more research to know for sure, it's possible that frizzled-6 expression may be inhibiting a particular signaling pathway and contributing to the formation of tumor-initiating cells."

The study is a good example of how work at UW Veterinary Care can lead to a better understanding of disease, Stein says, and it highlights how basic science can be a bridge to clinical research.

"Now I'd like to see what this means clinically," he says. "Does frizzled-6 serve as a marker of a more aggressive disease? Will it help us improve the accuracy of our prognoses? These are the questions we want to answer."

Stein also hopes to continue this line of research in human cancer patients. Meanwhile, the lead author on the study, Lucas Rodrigues, is continuing the investigation in dogs.

"Now we want to make sure that frizzled-6 is truly what gives these cells the ability to form new tumors," says Rodrigues, a postdoctoral fellow in Stein's lab.

While frizzled-6 may be the lone culprit, it is possible that a combination of multiple genes may lead to tumor formation, says Rodrigues.
-end-
The study was also co-authored by Victoria Thompson, an associate research specialist; Katie Holmes, a 2014 graduate of the Doctor of Veterinary Medicine program; and Michael Newton, a professor in the Departments of Statistics and Biostatistics and Medical Informatics.

CONTACT: Timothy Stein, 608-890-3268, tjstein@wisc.edu; Lucas Rodrigues, camposdesaro@wisc.edu

NOTE: Images to accompany this release can be downloaded at http://www.news.wisc.edu/newsphotos/canineCancer15.html

University of Wisconsin-Madison

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.