Antifreeze protein from ticks fights frostbite in mice

February 25, 2015

New Haven, Conn. -- A protein that protects ticks from freezing temperatures also prevents frostbite when introduced in mice, a Yale-led study has found. The research is the first to demonstrate the protein's ability to boost frostbite resistance in an adult mammal.

The research was published Feb. 25 in the journal PLOS ONE.

Several animal species, such as ticks and fish, have anti-freeze proteins that protect them from cold conditions. However, warm-blooded mammals do not have such proteins in their genomes and can suffer severe cold injuries such as frostbite. "We wanted to ask if you put antifreeze in mammals, can you protect them from a cold injury," said Erol Fikrig, M.D., principal investigator, professor of medicine at Yale School of Medicine, and an investigator for the Howard Hughes Medical Institute.

In the study, Yale investigators and their co-authors at Gulhane Military Medical Academy and Old Dominion University introduced an antifreeze protein derived from the black-legged tick into mice cells as well as in whole live mice. They first tested frostbite resistance of skin samples from mice that were treated with the antifreeze protein and from control mice. The skin samples were stored at 4 degrees Celsius for four days. At the end of four days, the skin cells from the treated mice fared better and even increased in number compared to the control samples.

The researchers also compared the effect of the antifreeze protein on whole mice tails. After seven days of cold exposure, 60% of the treated mice showed no visible sign of frostbite compared to only 11% of control mice. The tails of treated mice also showed fewer signs of inflammation consistent with frostbite damage than control mice.

The authors noted that the antifreeze protein prevents cold damage by limiting the growth of ice crystals that would otherwise cause tissue damage. "This study shows that if you put an antifreeze protein into warm-blooded animals, it does elicit antifreeze activity and it can protect the animal from frostbite," Fikrig explained.

While more research is required to test the application of the study findings beyond mice, they could have two hypothetical future benefits, noted the researchers. In the case of organ transplantation, the antifreeze protein could potentially help extend the amount of time that organs are placed in cold storage prior to transplant. Researchers could also explore the benefit of antifreeze protection for people with certain autoimmune diseases, such as scleroderma, that are characterized by cold sensitivity.
Other authors include Martin Heisig, Sarah Mattessich, Alison Rembisz, Ali Acar, Martin Shapiro, Carmen J. Booth, and Girish Neelakanta.

This study was supported by the National Institutes of Health, grant AI41440.

Citation: PLOS ONE

Yale University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to