Nav: Home

Physicists from ITMO University experimentally investigated new class of resonators

February 25, 2019

The physicists from ITMO University, Ioffe Institute and the Australian National University examined a new mechanism of realization of high-quality optical resonators. It is based on the mutual destructive interference of two low-quality optical states in one resonator allowing for secure "trapping" of light in various materials even at small scales. The theoretical results of the work were confirmed experimentally, laying the basis for new miniature devices: effective sensors, optical filters and nonlinear light sources. The research paper is published in SPIE Advanced Photonics.

In general, Fano resonances arise due to the interaction of two waves with a certain relation between the amplitudes and phases, for example, during the electromagnetic radiation scattering. This process is actively investigated and widely used to create resonators: devices that amplify the electromagnetic signal. The main parameters of Fano resonances, determining the peak width and asymmetry, were usually considered as independent. Therefore, they were tuned separately so as to achieve the maximum quality factor (Q factor): feature, showing how well the resonator traps and enhances the radiation.

However, the scientists from ITMO University showed that the resonance parameters are connected: when the resonance peak in the spectrum of the scattered radiation becomes symmetric, its width becomes minimal, leading to the maximum Q factor. This happens when t the resonator geometry changes and cause an unusual interaction of several states or modes. Physicists linked this phenomenon with the recently proposed class of resonators, which work on a subwavelength scale for a wide class of materials.

"Usually, to create a high-quality resonance, one need to trap the light somewhere using good mirrors or an environment with a high refraction index, from which the light will not exit easily. But we found a new mechanism for light trapping and described it in our earlier papers. It is based on two low quality modes, each trapping the light weakly, which together can form a new state with a very high Q factor. Two minuses make an plus. In this work we conducted experiments to prove it and developed a deeper theoretical understanding," explains Kirill Koshelev.

As a result, scientists for the first time showed experimentally that such unusual interaction of resonances is possible. The experiment was done in microwaves with using a cylindrical vessel. The vessel was being filled with water drop by drop, so that the pillar height was constantly changing. At the same time, using a special sensor, researchers measured the resonances quality factor and frequency.

"The work began with a theory: Kirill Koshelev proved that high quality factor is always accompanied by a symmetrical form of resonance. These results were confirmed in the experiment by Polina Kapitanova and Mikhail Rybin. Now we are working on the practical application of these resonators. Recently, we proposed a nonlinear frequency converter of light based on high-quality disk resonators. Now we continue to experiment on other materials. In addition, our results are used to create sensitive compact sensors. Alexey Slobozhanyuk is currently working on them," adds Andrey Bogdanov.
-end-
Reference: Bound states in the continuum and Fano resonances in the strong mode coupling regime
Andrey A. Bogdanov et al.
SPIE Advanced Photonics, 28 January 2019

ITMO University

Related Light Articles:

Analysis sheds light on how metaphors like 'sheds light' evolved
In the first large-scale study of its kind, researchers from Lehigh University and University of California, Berkeley analyzed 5,000 English-language metaphorical mapping records over the last 1100 years and found the evolution of word meaning to be highly systematic -- following predictable patterns.
A stream of superfluid light
Scientists have known for centuries that light is composed of waves.
No green light for latest traffic light app following expert evaluation
Psychologist Dr Kyle Wilson takes a 'human look' at a new vehicle traffic light app ahead of plans to introduce similar devices into 'connected vehicles'
Let there be light
Graphene Flagship research demonstrates large scale, fully integrable arrays of single photon quantum dots in layered materials, which may lead to hybrid on-chip photonics devices for networks and sensing.
Guiding light
Biologists discover an unexpected role for a light-sensitive receptor protein in the central brain that regulates circadian rhythms.
Red light, green light invention prevents work interruptions
A UBC computer scientist has invented a unique desk light that automatically switches from green to red when you are 'in the zone' and shouldn't be disturbed by colleagues.
Shedding light on the absorption of light by titanium dioxide
EPFL scientists have uncovered the hidden properties of titanium dioxide, one of the most promising materials for light-conversion technology.
A nano-roundabout for light
At TU Wien, it was possible to create a nanoscale optical element that regulates the flow of light particles at the intersection of two glass fibers like a roundabout.
Discovery: A new form of light
Scientists have discovered a new method to create fluorescent light that may have promising applications from LEDs to medical imaging.
How to control polarization of light
A group of physicists from the Lomonosov Moscow State University and Toyohashi University of Technology (Japan) has developed a method of ultrafast control of the light's polarization.

Related Light Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".