Nav: Home

Researchers identify possible role of Foxp1 protein in control of autoimmune diseases

February 25, 2019

Scientists at the Higher School of Economics, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences (IBCh RAS), and the Memorial Sloan Kettering Cancer Center created a genetic model that helps to understand how the body restrains autoimmune and oncological diseases. The researchers published their results in Nature Immunology.

The immune systems of humans and animals enable them to resist infectious diseases. That is, they recognize pathogens such as viruses, bacteria, fungi, protozoa, and multicellular parasites and destroy them. The T lymphocyte or "helper lymphocyte" is a special type of immune cell that identifies pathogens and helps other immune cells destroy both the pathogens and the cells they infect. The helper lymphocytes also contain a specialized lineage, called a T-regulatory or "Treg" that, instead of helping to fight infection, actually inhibits the response of normal lymphocytes. Mutations that interfere with the development and proper functioning of Treg cells lead to disastrous consequences for the body. Mice and humans without Treg cells develop fatal autoimmune diseases caused by T-helper cell's uncontrolled attack on the body's own cells.

The scientists studied the properties of the Foxp3 protein that is responsible for the development and proper functioning of Treg cells. They found that removing the Foxp3 protein gene from the genomic DNA prevents development of Treg cells, leading to the death of the organism. It is also known that numerous autoimmune diseases are associated with abnormal Foxp3 synthesis and Treg cell quantities. The Foxp3 protein does not work alone, but as part of a complex of proteins that help it regulate the work of genes necessary for the proper functioning of Treg cells. That set of proteins includes Foxp1, which has been the subject of much less research.

The authors of this study, under the guidance of Aleksander Rudensky, created a genetic model to explain exactly how the Foxp1 protein affects Foxp3. They began by removing part of the Foxp1 gene in Treg from laboratory mice. A comparison of the "normal" cells with the cells in which Foxp1 had been removed revealed that Foxp3 is much worse at binding DNA in the absence of Foxp1. That is, the genes of the proteins crucial for the proper functioning of Treg cells do not work correctly without Foxp1. Thus, if Foxp3 is essential for Treg, then Foxp1 also holds great importance because its removal negatively affects Foxp3. According to the researchers, achieving an understanding the structure of the complex of proteins that includes Foxp3 and Foxp1 is the key to creating drugs that can selectively affect Treg cells.

'The results significantly broaden our knowledge of the molecular mechanisms regulating immunological tolerance that can be used for treating cancer and autoimmune diseases,' notes Yury Rubtsov, a co-author of the study, associate professor of the HSE faculty of Biology and Biotechnologies, and senior researcher at the IBCh RAS Laboratory of Molecular Oncology. 'Cancerous tumours attract Treg cells to defend themselves against the body's immune system. The more Treg cells present in the tumour, the worse the patient's prognosis. Thus, if we could control the quantity and activity of Treg cells by, for example, decreasing them in the case of a tumour or, on the contrary, increasing them in the case of autoimmune disease, we could create safe medicines for treating heretofore incurable illnesses.'
-end-


National Research University Higher School of Economics

Related Autoimmune Diseases Articles:

Cellular stress increases the probability of developing autoimmune diseases
Researchers found that cellular stress enhances the activation of certain type of immune cells with implications in many chronic inflammatory conditions.
Smoking decreases MAIT cells, implicated in the pathology of autoimmune diseases
New research published in the May 2017 issue of the Journal of Leukocyte Biology provides another reason why smoking tobacco is harmful.
Researchers describe ultrasensitive detection of protein linked to multiple autoimmune diseases
Researchers in France have developed a new method that will allow doctors to detect minute amounts of a protein called interferon- in patient samples.
Synthetic carbohydrates against autoimmune diseases
Researchers are developing an innovative approach for the treatment of a rare autoimmune disease of the peripheral nervous system, using a type of molecular sponge consisting of carbohydrates to remove pathogenic antibodies from the bloodstream.
Cargo-carrying red blood cells alleviate autoimmune diseases in mice
Using red blood cells modified to carry disease-specific antigens, a team of scientists from Whitehead Institute and Boston Children's Hospital have prevented and alleviated two autoimmune diseases -- multiple sclerosis (MS) and type 1 diabetes --i n early stage mouse models.
Study of complex genetic region finds hidden role of NCF1 in multiple autoimmune diseases
Medical University of South Carolina investigators report pre-clinical research showing that a genetic variant encoded in neutrophil cystolic factor 1 (NCF1) is associated with increased risk for autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis, and Sjögren's syndrome, in the January 2017 issue of Nature Genetics.
'Master regulator' in genes may make women more susceptible to autoimmune diseases
New research identifies an inflammatory pathway in women that could help explain why they develop autoimmune diseases at a much higher rate than men.
Thwarting autoimmune diseases
The immunoproteasome dismantles proteins and the resulting fragments are displayed on the surface of cells.
HPV vaccine found safe in girls and women with autoimmune diseases
In a recent study of girls and women diagnosed with at least one autoimmune disease, vaccination against human papillomavirus (HPV) did not increase the risk of developing another autoimmune disease.
Cancer drugs could target autoimmune diseases
Drugs currently being trialled in cancer patients have been used to successfully target an autoimmune condition in mice at UCL and King's College London.

Related Autoimmune Diseases Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".