Nav: Home

Mini tumors could help identify personalized treatments for people with rare cancers

February 25, 2019

UCLA scientists have developed a new method to quickly screen hundreds of drugs in order to identify treatments that can target specific tumors.

The approach could help scientists understand how a person's tumor would respond to a certain drug or drug combination, and it could help guide treatment decisions for people with rare and hard-to-treat cancers. A paper detailing the new technique was published in Communications Biology.

"We always focus on how we need new and better drugs to treat cancer," said Alice Soragni, the senior author of the study and a scientist at the UCLA Jonsson Comprehensive Cancer Center. "While that's true, we also have many drugs currently available -- we just haven't been able to figure out who is going to respond to which ones for most of them."

The screening method uses patients' own cells, collected during surgery, to create miniature tumor organoids.

Organoids are simpler, smaller versions of bodily organs or tumors that scientists can grow in a lab to replicate the full-function structures; researchers create them to study diseases and possible treatments.

"We obtain cancer cells directly from surgery and that same day we can seed them to generate tumor organoids," said Soragni, an assistant professor in the division of hematology/oncology at the David Geffen School of Medicine at UCLA and member of the Molecular Biology Institute at UCLA. "We created a miniaturized system that allows the setup of hundreds of wells for testing with minimal manipulation."

After the tumor organoids are established, typically in three to five days, the lab screens hundreds of drugs to determine which ones are effective. The approach developed by Soragni's lab uses an automated feed -- instead of testing one drug at a time, scientists use robots to simultaneously screen hundreds of different treatments. The method is fast and efficient: The entire process, from surgery to final results, can take as little as one to two weeks.

To test the technique, Soragni's team took cells from four patients -- three with ovarian cancer and one with peritoneal cancer -- to grow tumor organoids. The test enabled the researchers to produce personalized snapshots of which drugs were effective for each patient's organoids.

For example, one of the four participants in the study was a woman with an extremely rare type of ovarian cancer. (The specific subtype of cancer is diagnosed in fewer than 200 U.S. women each year.) The organoids developed from her cancer cells responded to a class of drugs called cyclin-kinase inhibitors, which can target cancer by preventing it from growing. Soragni said there are currently no known biomarkers to predict the effect of the specific cyclin-kinase inhibitors identified by the screening on tumor growth. So without the test, it would have been impossible to know that the drugs would work on that specific subtype of cancer.

For many rare types of cancer, scientists know little about drug susceptibilities. But being able to create models of rare tumors in the lab can help scientists identify patients who could benefit the most from a specific treatment. In addition to identifying personalized treatments, the technique could also help scientists select patients to participate in clinical trials for potential new cancer therapies.

"This could become a powerful tool to help guide therapies for people who really have no known treatment options left," Soragni said.
-end-
The study's first author is Nhan Phan, a visiting graduate student researcher through the UCLA-Department of Energy Center for Global Mentoring. The other authors are Jenny Hong, Bobby Tofig, Matthew Mapua, David Elashoff, Neda Moatamed, Jin Huang, Dr. Sanaz Memarzadeh and Robert Damoiseaux, all of UCLA.

The research was supported by a Worldwide Cancer Research grant. Additional support was provided by the Hirshberg Foundation, a National Institutes of Health/National Center for Advancing Translational Science grant, the UCLA Specialized Program of Research Excellence in Prostate Cancer, and an American Association for Cancer Research - Millennium Fellowship in Prostate Cancer.

University of California - Los Angeles Health Sciences

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...