Nav: Home

Key differences between prokaryotic and eukaryotic RNA silencing Argonaute enzyme unveiled

February 25, 2019

Enzymes have clearly defined active sites to allow the substrate molecule to fit intricately. This is often coupled with an enzymatic conformational change prior to the occurrence of the catalysis reaction. For Ago, the catalysis step requires insertion of a "glutamate finger" to form the catalytic plugged-in conformation, which can be stabilized through hydrogen-bonding networks provided by two symmetric positively-charged residues.

For Ago in eukaryotes, these two symmetric positively-charged residues play the identical role that is critical for cleavage. Hence, it was long speculated that the two analogous resides in prokaryotic Ago perform the same critical role in cleavage function. Surprisingly, this study (Fig. 1) showed that in pAgo, only one (Arginine 545) of the two residues is involved in cleavage function. When the other one (Arginine 486) was substituted with other amino acids, the enzyme was still able to maintain its cleavage activity. Based on these results, the study further suggested that R486 may play other roles such as assisting the insertion of the glutamate finger. The discovery of such striking differences in the roles of these symmetric resides between eAgos and pAgos provides novel insights on how the cleavage functions evolve during the evolution journey from prokaryote to eukaryote.

To achieve these results, computational methods combining Quantum Mechanics, Molecular Mechanics, and Molecular Dynamics (QM/MM) were applied to elucidate the cleavage reaction mechanism and identify functional roles of the amino acid residues. This research was made possible by large-scale high-performance computing resources, which were computed equivalent to 10,000 CPU cores for 25 weeks on the Shaheen II Supercomputer at KAUST in collaboration with Prof. Xin GAO's group.

"This research was made possible due to current day computing capabilities and the precision that QM/MM modelling allows for," said Prof. HUANG Xuhui. "Comparing which amino acid residues play a key part in the target DNA/RNA cleavage step in pAgo and eAgo sheds light on how Ago protein evolves from prokaryotes to eukaryotes to cleave DNA/RNA. This information may be useful in ultimately modifying the Ago protein for use as an enhanced gene editing tool in the future," Prof. Huang explained.
This collaborative study on the bacterial Thermus thermophilus Ago (TtAgo; pAgo) enzyme was led by Prof. HUANG Xuhui, Padma Harilela Associate Professor of Science, from the Department of Chemistry at the Hong Kong University of Science and Technology (HKUST), alongside Prof. ZHANG Yinghai from New York University, and Prof. WANG Yanli from the Chinese Academy of Sciences. The goal behind this research was to identify and contrast the function(s) of key amino acid residues that are present in both pAgo and eAgo.

Details of the methodology and their findings were published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) journal on December 27, 2018. (DOI: 10.1073/pnas.1817041116)

Hong Kong University of Science and Technology

Related Enzyme Articles:

Enzyme may represent new target for treating asthma
An enzyme called diacylglycerol kinase zeta (DGKζ) appears to play an important role in suppressing runaway inflammation in asthma and may represent a novel therapeutic target.
Enzyme may indicate predisposition to cardiovascular disease
Study suggests that people with low levels of PDIA1 in blood plasma may be at high risk of thrombosis; this group also investigated PDIA1's specific interactions in cancer.
BridgIT, a new tool for orphan and novel enzyme reactions
Chemical engineers at EPFL have developed an online tool that can accurately assign genes and proteins to unknown 'orphan' reactions, which are a major headache for biotechnology, drug development, and even medicine.
How a mitochondrial enzyme can trigger cell death
Cytochrome c is a small enzyme that plays an important role in the production of energy by mitochondria.
Novel enzyme discovered in intestinal bacteria
At the University of Konstanz, in cooperation with Harvard University, a key enzyme for formation of harmful hydrogen sulphide in the human gut by Bilophila bacteria has been discovered.
Chemists discover unexpected enzyme structure
MIT chemists have discovered a unique aspect of the structure of carbon monoxide dehydrogenase, a bacterial enzyme that can convert carbon dioxide to carbon monoxide.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
Enzyme discovery could help in fight against TB
Research by a team led by Dr. Elizabeth Fullam has revealed new findings about an enzyme found in Mycobacterium tuberculosis (Mtb), the bacterium that causes TB.
Researchers discover new enzyme paradigm for critical reaction researchers discover new enzyme paradigm for critical reaction in converting lignin to useful produce useful products
An international research team, including scientists from the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), has discovered and characterized a new family of cytochrome P450 enzymes that is critical to improving the conversion of lignin--one of the main components of plants--into valuable products such as nylon, plastics, and chemicals.
Novel genetic method improves efficiency of enzyme
Researchers at the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Georgia developed a new genetic engineering technique to dramatically improve an enzyme's ability to break down biomass.
More Enzyme News and Enzyme Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.