Nav: Home

A very human machine

February 25, 2019

Like a well-guarded fortress, the human brain attacks intruders on sight. Foreign objects, including neural probes used to study and treat the brain, do not last long. But now, researchers have designed a probe that looks, acts, and feels so much like a real neuron that the brain cannot identify the imposters. According to Charles M. Lieber, this breakthrough "literally blurs the ever-present and clear dissimilarities in properties between man-made and living systems." They have blurred the line between human and machine.

Lieber, the Joshua and Beth Friedman University Professor at Harvard University, and his lab members are authors on a new paper published in Nature Materials that presents a bioinspired design for neural probes.

Implanted directly into brain tissue, probes are designed to survive as long as possible in the organ's warm, humid, and inhospitable environment. Sensors hidden within protective casings send data back to researchers. Knowing how and when individual neurons fire and neural circuits communicate could inform how to treat neurological disorders like Parkinson's, reverse neural decay from Alzheimer's and aging, or even enhance cognitive capabilities.

But current implants cannot trick the brain--they cause a foreign body response. Large and stiff compared to real neurons and neural tissue, traditional implants have two major impediments to sustained monitoring. During the initial placement in brain tissue--which usually requires surgery--neurons flee the impacted area. Previous studies have shown that the brain's immune system senses the foreign object and gets to work, causing inflammation and scar tissue to isolate the device. Even if they can capture signals beyond the scar tissue, rigid probes can shift position and end up replacing one neural signal for another, closer one.

"This will ultimately make the recorded signal unstable," said first author Xiao Yang, a fourth-year graduate student in the Lieber lab. Wearing a purple and pink speckled sweater, glasses, and jeans, she moved her cupped hands together, then apart, then together again as she explained how she and her team built a probe that inspires negligible immune response, records neural signals within a day post-implantation, and may even encourage tissue regeneration.

"The stereotype of the neural probe is that they are giant compared to the neuron targets that they're interrogating. But in our case, they are essentially the same," said Yang. Their probe mimics three features that previously have not been possible to achieve in a lab: the shape, size, and flexibility of an actual neuron.

Neurons look a bit like tadpoles, with round heads and long, flexible tails. So, Yang and her colleagues created a "head" to house the¬ir metal recording electrode, which matches the size of the neuron's soma (or cell body). Their wire interconnect snakes through an ultra-flexible polymer "tail," resembling the neuron's neurite. According to Yang, their neuron-like electronics (NeuE) are "5 to 20 times more flexible than the most flexible probes reported to date." The ones they bested were their own mesh electronics.

The width of a typical neuron "head" is about the same a very fine strand of hair (20 microns), and the "tail" can be 10-20 times finer. Measuring the same or even thinner widths, the neuron-like electronic is the smallest probe yet. To craft their microscopic tools, Yang and her colleagues relied on photolithography, which uses light to transfer a pattern onto material and constructs the probe's four distinct layers of metal and polymer one at a time.

Once built, the team uses a syringe to inject sixteen of their cell imitators into the hippocampus region--chosen for its central role in learning, memory, and aging--of a mouse brain. There, they unfold to create a porous web, imitating the brain's crisscrossing neuron network.

Bigger, solid probes exclude native cells from their territory and can disrupt the neural circuits that researchers are trying to study. Yang's probes allow cells to integrate fully and take-up less than 1% of the volume where they are implanted. Starting from as early as a day to months later, neurons integrate with the artificial network, forming a harmonious hybrid. This assimilation explains why the team achieved stable data collection even months post-implantation. They did not lose even one neuron signal. Instead, they gained some.

"In an unexpected and exciting result," according to Yang, the new neuronal signals indicate that newborn neurons may use the artificial neuron-like electronics as a scaffold to reach damaged areas of the brain and help regenerate tissue.

Regenerative treatments typically rely on stem cells to assist the brain to rebuild after damage. But, like larger probes, transplanted stem cells can cause an immune response, which weakens their efficacy. Neuron-like electronics instead recruits endogenous stem cells from the host's brain and helps them migrate to the damaged region. Since they are not foreign objects, the brain's immune system lets them work in peace. Though further research is needed, the neuron-like electronics could eventually offer a safe, stable alternative to treat neurological diseases, brain damage, and even depression and schizophrenia, where the added benefit of actively monitoring and modulating the regenerated neural networks will be possible.

Currently, Yang is working on several directions, including the design and fabrication of even smaller and more flexible probes, as well as exploring the potential of the neuron-like electronics to serve as an active scaffold for regenerating neural tissue in vivo. With marginal immune response, regenerative properties, and unprecedented stability, the team not only blurred the line between man-made and living systems, they made it near invisible.
-end-


Harvard University

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.