Nav: Home

Ancient rocks provide clues to Earth's early history

February 25, 2019

Oxygen in the form of the oxygen molecule (O2), produced by plants and vital for animals, is thankfully abundant in Earth's atmosphere and oceans. Researchers studying the history of O2 on Earth, however, know that it was relatively scarce for much of our planet's 4.6 billion-year existence.

So when and where did O2 begin to build up on Earth?

By studying ancient rocks, researchers have determined that sometime between 2.5 and 2.3 billion years ago, Earth underwent what scientists call the "Great Oxidation Event" or "GOE" for short. O2 first accumulated in Earth's atmosphere at this time and has been present ever since.

Through numerous studies in this field of research, however, evidence has emerged that there were minor amounts of O2 in small areas of Earth's ancient shallow oceans before the GOE. And in a study published recently in the journal Nature Geoscience, a research team led by scientists at Arizona State University (ASU) has provided compelling evidence for significant ocean oxygenation before the GOE, on a larger scale and to greater depths than previously recognized.

For this study, the team targeted a set of 2.5 billion-year-old marine sedimentary rocks from Western Australia known as the Mt. McRae Shale. "These rocks were perfect for our study because they were shown previously to have been deposited during an anomalous oxygenation episode before the Great Oxidation Event," says lead author Chadlin Ostrander of ASU's School of Earth and Space Exploration.

Shales are sedimentary rocks that were, at some time in Earth's past, deposited on the sea floor of ancient oceans. In some cases, these shales contain the chemical fingerprints of the ancient oceans they were deposited in.

For this research, Ostrander dissolved shale samples and separated elements of interest in a clean lab, then measured isotopic compositions on a mass spectrometer. This process was completed with the help of co-authors Sune Nielsen at Woods Hole Oceanographic Institution (Massachusetts); Jeremy Owens at Florida State University; Brian Kendall at the University of Waterloo (Ontario, Canada); scientists Gwyneth Gordon and Stephen Romaniello of ASU's School of Earth and Space Exploration; and Ariel Anbar of ASU's School of Earth and Space Exploration and School of Molecular Sciences. Data collection took over a year and utilized facilities at Woods Hole Oceanographic Institution, Florida State University, and ASU.

Using mass spectrometers, the team measured the thallium and molybdenum isotope compositions of the Mt. McRae Shale. This was the first time both isotope systems had been measured in the same set of shale samples. As hypothesized, a predictable thallium and molybdenum isotope pattern emerged, indicating that manganese oxide minerals were being buried in the sea floor over large regions of the ancient ocean. For this burial to occur, O2 needed to have been present all the way down to the sea floor 2.5 billion-years-ago.

These findings improve scientists' understanding of Earth's ocean oxygenation history. Accumulation of O2 was probably not restricted to small portions of the surface ocean prior to the GOE. More likely, O2 accumulation extended over large regions of the ocean and extended far into the ocean's depths. In some of these areas, O2 accumulation seems to have even extended all the way down to the sea floor.

"Our discovery forces us to re-think the initial oxygenation of Earth," states Ostrander. "Many lines of evidence suggest that O2 started to accumulate in Earth's atmosphere after about 2.5 billion years ago during the GOE. However, it is now apparent that Earth's initial oxygenation is a story rooted in the ocean. O2 probably accumulated in Earth's oceans - to significant levels, according to our data - well before doing so in the atmosphere."

"Now that we know when and where O2 began to build up, the next question is why" says ASU President's Professor and co-author Anbar. "We think that bacteria that produce O2 were thriving in the oceans long before O2 began to build up in the atmosphere. What changed to cause that build-up? That's what we're working on next."
-end-


Arizona State University

Related Atmosphere Articles:

Primitive atmosphere discovered around 'Warm Neptune'
A pioneering new study uncovering the 'primitive atmosphere' surrounding a distant world could provide a pivotal breakthrough in the search to how planets form and develop in far-flung galaxies.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Northern oceans pumped CO2 into the atmosphere
The Norwegian Sea acted as CO2 source in the past.
Study opens new questions on how the atmosphere and oceans formed
A new study led by The Australian National University has found seawater cycles throughout the Earth's interior down to 2,900km, much deeper than previously thought, reopening questions about how the atmosphere and oceans formed.
How a moon slows the decay of Pluto's atmosphere
A new study from the Georgia Institute of Technology provides additional insight into relationship between Pluto and its moon, Charon, and how it affects the continuous stripping of Pluto's atmosphere by solar wind.
Fossil fuel formation: Key to atmosphere's oxygen?
For the development of animals, nothing -- with the exception of DNA -- may be more important than oxygen in the atmosphere.
Researchers dial in to 'thermostat' in Earth's upper atmosphere
A team led by the University of Colorado Boulder has found the mechanism behind the sudden onset of a 'natural thermostat' in Earth's upper atmosphere that dramatically cools the air after it has been heated by violent solar activity.
New biochar model scrubs CO2 from the atmosphere
New Cornell University research suggests an economically viable model to scrub carbon dioxide from the atmosphere to thwart global warming.
Venus-like exoplanet might have oxygen atmosphere, but not life
The distant planet GJ 1132b intrigued astronomers when it was discovered last year.
Middle atmosphere in sync with the ocean
In the late 20th century scientists observed a cooling at the transition between the troposphere and stratosphere at an altitude of about 15 kilometers.

Related Atmosphere Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...