Nav: Home

Graphite offers up new quantum surprise

February 25, 2019

Researchers at The University of Manchester in the UK, led by Dr Artem Mishchenko, Prof Volodya Fal'ko and Prof Andre Geim, have discovered the quantum Hall effect in bulk graphite - a layered crystal consisting of stacked graphene layers. This is an unexpected result because the quantum Hall effect is possible only in so-called two-dimensional (2D) systems where electrons' motion is restricted to a plane and must be disallowed in the perpendicular direction. They have also found that the material behaves differently depending on whether it contains odd or even number of graphene layers - even when the number of layers in the crystal exceeds hundreds. The work is an important step to the understanding of the fundamental properties of graphite, which have often been misunderstood, esepcially in recent years.

In their work, published in Nature Physics, Mishchenko and colleagues studied devices made from cleaved graphite crystals, which essentially contain no defects. The researchers preserved the high quality of the material also by encapsulating it in another high-quality layered material - hexagonal boron nitride. They shaped their devices in a Hall bar geometry, which allowed them to measure electron transport in the thin graphite.

"The measurements were quite simple." explains Dr Jun Yin, the first author of the paper. "We passed a small current along the Hall bar, applied strong magnetic field perpendicular to the Hall bar plane and then measured voltages generated along and across the device to extract longitudinal resistivity and Hall resistance.

Dimensional reduction

Fal'ko who led the theory part said: "We were quite surprised when we saw the quantum Hall effect (QHE) - a sequence of quantized plateaux in the Hall resistance - accompanied by zero longitudinal resistivity in our samples. These are thick enough to behave just as a normal bulk semimetal in which QHE should be forbidden."

The researchers say that the QHE comes from the fact that the applied magnetic field forces the electrons in graphite to move in a reduced dimension, with conductivity only allowed in the direction parallel to the field. In thin enough samples, however, this one-dimensional motion can become quantized thanks to the formation of standing electron waves. The material thus goes from being a 3D electron system to a 2D one with discrete energy levels.

Even/odd number of graphene layers is important

Another big surprise is that this QHE is very sensitive to even/odd number of graphene layers. The electrons in graphite are similar to those in graphene and come in two "flavours" (called valleys). The standing waves formed from electrons of two different flavours sit on either even - or odd - numbered layers in graphite. In films with even number of layers, the number of even and odd layers is the same, so the energies of the standing waves of different flavours coincide.

The situation is different in films with odd numbers of layers, however, because the number of even and odd layers is different, that is, there is always an extra odd layer. This results in the energy levels of the standing waves of different flavours shifting with respect to each other and means that these samples have reduced QHE energy gaps. The phenomenon even persists for graphite hundreds of layers thick.

Observations of the fractional QHE

The unexpected discoveries did not end there: the researchers say they also observed the fractional QHE in thin graphite below 0.5 K. The FQHE is different from normal QHE and is a result of strong interactions between electrons. These interactions, which can often lead to important collective phenomena such as superconductivity, magnetism and superfluidity, make the charge carriers in a FQHE material behave as quasiparticles with charge that is a fraction of that of an electron.

"Most of the results we have observed can be explained using a simple single-electron model but seeing the FQHE tells us that the picture is not so simple," says Mishchenko. "There are plenty of electron-electron interactions in our graphite samples at high magnetic fields and low temperatures, which shows that many-body physics is important in this material."

Coming back to graphite

Graphene has been in the limelight these last 15 years, and with reason, and graphite was pushed back a little by its one-layer-thick offspring, Mishchenko adds. "We have now come back to this old material. Knowledge gained from graphene research, improved experimental techniques (such as van der Waals assembly technology) and a better theoretical understanding (again from graphene physics), has already allowed us to discover this novel type of the QHE in graphite devices we made.

"Our work is a new stepping stone to further studies on this material, including many-body physics, like density waves, excitonic condensation or Wigner crystallization."

The graphite studied here has natural (Bernal) stacking, but there is another stable allotrope of graphite - rhombohedral. There are no reported transport measurements on this material so far, only lots of theoretical predictions, including high-temperature superconductivity and ferromagnetism. The Manchester researchers say they thus now plan to explore this allotrope too.

"For decades graphite was used by researchers as a kind of 'philosopher's stone' that can deliver all probable and improbable phenomena including room-temperature superconductivity," Geim adds with a smile. "Our work shows what is, in principle, possible in this material, at least when it is in its purest form."

University of Manchester

Related Graphene Articles:

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at