Nav: Home

Unprecedented biological changes in the global ocean

February 25, 2019

Current monitoring of marine biological systems only covers a tiny fraction of the ocean, which limits our ability to confidently predict the expected effects of climate disturbances on marine biodiversity. Using a new computer model, an international team led by the CNRS and involving, in France, researchers from Sorbonne University has demonstrated that biological changes are accelerating, which has consequences for our use of marine resources. Their findings are published in Nature Climate Change (February 25).

Across time, marine biological systems have experienced changes of varying magnitude due to natural climatic fluctuations. Abrupt biological shifts--dubbed "climate surprises"--have also been detected in many regions of the ocean. To understand these shifts, whether sudden and unexpected or stretched out over longer periods, scientists from the CNRS and Sorbonne University,[1] with colleagues from European, American, and Japanese research institutes, developed a novel approach based on the macroecological theory on the arrangement of life (METAL).[2] To construct their computer model, the researchers designed a large number of simulated species ("pseudo-species") exhibiting a wide range of responses to natural temperature variations. These pseudo-species, which avoid thermal fluctuations beyond their range of tolerance, form "pseudo-communities" and gradually colonize all oceanic regions in the model.

Marine biodiversity monitoring programs only cover a small area of the ocean and usually only within regions near the coast. This new model based on the METAL theory offers global coverage and permits rapid identification of major biological shifts that can strongly impact marine biodiversity and associated ecosystem services like fishing, aquaculture, and the carbon cycle. When initially tested for fourteen oceanic regions, the model accurately predicted actual biological changes observed in the field since the 1960s. By next applying the model to the global ocean, the researchers were able to quantify the force and spatial extent of these biological shifts. The model also allowed them to draw attention to a recent, unheard-of rise in the number of "climate surprises," which may likely be attributed to El Niño, temperature anomalies of the Atlantic and the Pacific,[3] and Arctic warming.

In most cases, the model predicts an event one year before it occurs, making it possible to identify regions overlooked by current field observation programs where biodiversity is under threat. Though marine biodiversity provides humans with 80 million metric tons of fish and invertebrates annually, the changes revealed by this new computer model may redistribute ocean communities and species worldwide in ways that may benefit or harm mankind.
-end-
1. These scientists hail from the Laboratory of Oceanology and Geosciences (CNRS / Lille University / Université du Littoral Côte d'Opale), the BOREA research unit (CNRS / MNHN / IRD / Sorbonne University / University of Caen / Université des Antilles), and the Villefranche Oceanographic Laboratory (CNRS / Sorbonne University).

2. See Marine biodiversity, climatic variability and global change by Grégory Beaugrand (Routledge, 2015).

3. Called "blobs," these anomalies consist of vast expanses of abnormally warm water in the Pacific and abnormally cold water in the Atlantic.

CNRS

Related Biodiversity Articles:

Biodiversity is 3-D
The species-area relationship (SAC) is a long-time considered pattern in ecology and is discussed in most of academic Ecology books.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
Temperature drives biodiversity
Why is the diversity of animals and plants so unevenly distributed on our planet?
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
Biodiversity loss in forests will be pricey
A new global assessment of forests -- perhaps the largest terrestrial repositories of biodiversity -- suggests that, on average, a 10 percent loss in biodiversity leads to a 2 to 3 percent loss in the productivity, including biomass, that forests can offer.
Biodiversity falls below 'safe levels' globally
Levels of global biodiversity loss may negatively impact on ecosystem function and the sustainability of human societies, according to UCL-led research.
Unravelling the costs of rubber agriculture on biodiversity
A striking decline in ant biodiversity found on land converted to a rubber plantation in China.
Nitrogen is a neglected threat to biodiversity
Nitrogen pollution is a recognized threat to sensitive species and ecosystems.

Related Biodiversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".