Nav: Home

Researchers invent a needle that knows where to go

February 25, 2019

Boston, MA -- Syringes and hollow needles have been used to deliver medication for more than a century. However, the precise implementation of these devices depends on the operator, and it can be difficult to deliver medication to delicate regions such as the suprachoroidal space at the back of the eye. Investigators from Brigham and Women's Hospital have developed a highly sensitive intelligent-injector for tissue-targeting (i2T2) that detects changes in resistance in order to properly and safely deliver medication in preclinical testing. Their results are published in Nature Biomedical Engineering.

"Targeting specific tissues using a conventional needle can be difficult and often requires a highly trained individual," said senior corresponding author Jeff Karp, PhD, Professor of Medicine at the Brigham. "In the past century there has been minimal innovation to the needle itself, and we saw this as an opportunity to develop better, more accurate devices. We sought to achieve improved tissue targeting while keeping the design as simple as possible for ease of use."

One location that is difficult to target with a standard needle is the suprachoroidal space (SCS), which is located between the sclera and choroid in the back of the eye. The SCS has emerged as an important location for medication delivery and is challenging to target because the needle must stop after transitioning through the sclera, which is less than 1 millimeter thick (about half the thickness of a U.S. quarter), to avoid damaging the retina. Additional common tissue targets include the epidural space around the spinal cord (used for epidural anesthesia to ease pain during labor), the peritoneal space in the abdomen, and subcutaneous tissue between the skin and muscles.

The i2T2 device was fabricated using a standard hypodermic needle and parts from commercially available syringes. Body tissues have different densities, and the intelligent injector harnesses differences in pressure to enable needle movement into a target tissue. The driving force, maximal forces and frictional force of the injector were tested using a universal testing machine. The feedback of the injector is instantaneous, which allows for better tissue targeting and minimal overshoot (injecting past the target tissue) into an undesired location.

The i2T2 was tested on tissue from three animal models to examine delivery accuracy in the suprachoroidal, epidural and peritoneal spaces as well as subcutaneously. Using both extracted tissue and an animal model, the researchers found that the i2T2 prevented overshoot injuries and precisely delivered medication to the desired location without any additional training or specialized technique.

In preclinical models, the researchers reported high coverage of contrast agent in the posterior section of the eye, indicating that the payload had been injected into the correct location. The researchers also showed the injector could deliver stem cells to the back of the eye that could be useful for regenerative therapies.

"The stem cells injected into the SCS survived, indicating that the force of injection and the transit through the SCS were gentle on the cells," said Kisuk Yang, a co-author and postdoctoral fellow in Karp's laboratory. "This should open the door to regenerative therapies for patients suffering from conditions of the eye and beyond."

"This intelligent injector is a simple solution that could be rapidly advanced to patients to help increase target tissue precision and decrease overshoot injuries. We have completely transformed needles with a small modification that achieves better tissue targeting," said first author Girish Chitnis, PhD, a former postdoctoral fellow in Karp's laboratory. "This is a platform technology, so the uses could be very widespread."

"The i2T2 will help facilitate injections in difficult-to-target locations in the body," said Miguel González-Andrades, MD, PhD, ophthalmologist co-author of the manuscript and collaborator with Karp's lab. "The next step toward human use is to demonstrate the utility and safety of the technology in relevant pre-clinical disease models."
-end-
Funding for this work was provided by the National Institutes of Health (R01HL095722) and Boston- KPro.

Paper cited: Chitnis, G et al. "An Intelligent Injector for Tissue Targeting and its Application for Drug Delivery" Nature Biomedical Engineering DOI: 10.1038/s41551-019-0350-2

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 4.2 million annual patient visits and nearly 46,000 inpatient stays, is the largest birthing center in Massachusetts and employs nearly 16,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 3,000 researchers, including physician-investigators and renowned biomedical scientists and faculty supported by nearly $666 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative as well as the TIMI Study Group, one of the premier cardiovascular clinical trials groups. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Brigham and Women's Hospital

Related Eye Articles:

Antibody-based eye drops show promise for treating dry eye disease
Researchers have identified the presence of a specific type of antibody, called anti-citrullinated protein autoantibodies, or ACPAs, in human tear fluid.
Left eye? Right eye? American robins have preference when looking at decoy eggs
Just as humans are usually left- or right-handed, other species sometimes prefer one appendage, or eye, over the other.
The algae's third eye
Scientists at the Universities of W├╝rzburg and Bielefeld in Germany have discovered an unusual new light sensor in green algae.
Making an eye for you
Kyoto University scientists utilize simulations and laboratory experiments to find that cells sense the mechanical forces to form the primordial eye, the optic cup.
A trained eye
UCSB researchers show that category learning can be influenced by where an object is in our field of vision.
Decrease in eye injuries to children
Eye injuries that sent children to emergency departments in the United States decreased from 2006 to 2014, and most eye injuries posed low risk for vision loss.
Increased electrical activity in eye may relieve short-term dry eye pain
A boost of electrical activity in the eye's mucous membranes may lead to new treatments for the painful condition known as dry eye.
An eye toward regeneration
UNLV scientist Kelly Tseng, Ph.D. and her team have found that frog embryos can fully regrow their eyes after injuries, a breakthrough that may lead one day to the ability to orchestrate tissue regeneration in humans.
Art is in the eye of the beholder
A researcher from James Cook University in Australia has found that a person's mental state affects how they look at art.
In the eye of the medulloblastoma
Can genes normally expressed only in the eye be activated in brain tumors?
More Eye News and Eye Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.