Nav: Home

Stellar wind of old stars reveals existence of a partner

February 25, 2019

Red giants are old stars that eject gaseous material and solid particles through a stellar wind. Some red giants appeared to lose an exceptionally large amount of mass this way. However, new observations reveal that this is not quite the case. The stellar wind is not more intense than normal, but is affected by a partner that was overlooked until now: a second star that circles the red giant. These are the results of an international study led by Belgian university KU Leuven.

Humans don't live long enough to realise it, but stars are also born, they age, and they die. It's a process that takes billions of years. As a star gets older, it becomes bigger, colder, and redder - hence the name 'red giants'. Our sun will also become such a red giant in four and a half billion years.

In the final stage of their life, red giants eject their mass - gas and other matter - in the form of a stellar wind. Earlier observations confirmed that red giants lose a lot of mass this way. Twelve mass-loss rate record holders, in particular, have been baffling scientists for decades. These red giants supposedly eject the equivalent of 100 earths per year for 100 to 2,000 years on end. Even astronomically speaking, that's a lot of matter in a short amount of time.

This was difficult to explain, says Professor Leen Decin from the KU Leuven Institute of Astronomy: "If you look at the mass of such a star in the next phase of its life, the intense stellar wind doesn't last long enough to account for the mass loss that we've seen. It was also statistically improbable that we had discovered twelve of these red giants, knowing that what we were seeing was a phase that lasted only hundreds or thousands of years compared with their billion-year-long life. It's like finding a needle in a haystack twelve times."

New observations from the ALMA telescope in Chile shed light on what was happening with two of these red giants. "For these stars, the stellar wind forms a spiral. It's an indirect indication that the red giant is not alone, but part of a binary star system. The red giant is the main star with a second star circling it. Both stars affect each other and their environment gravitationally in two ways: on the one hand, the stellar wind is pulled in the direction of the second star and, on the other hand, the red giant itself also wiggles slightly. These movements give the stellar wind a spiral shape."

The discovery of a partner star made everything fall into place, says Decin: "We believed that these red giants were record holders for mass-loss rate, but that's not the case. It only seemed as though they were losing a lot of mass because there's an area between the two stars where the stellar wind is much more concentrated due to the gravity of the second star. These red giants don't lose the equivalent of 100 earths per year, but rather 10 of them - just like the regular red giants. As such, they also die a bit more slowly than we first assumed. To rephrase in a positive way: these old stars live longer than we thought."

The astronomers are now investigating whether a system with a binary star could also be the explanation for other special red giants. "We believed that many stars lived alone, but we will probably have to adjust this idea. A star with a partner is likely to be more common than we thought," Decin concludes.
-end-
About KU Leuven

KU Leuven is Europe's most innovative university. Located in Belgium, it is dedicated to research, education, and service to society. KU Leuven is a founding member of the League of European Research Universities (LERU) and has a strong European and international orientation. Our scientists conduct basic and applied research in a comprehensive range of disciplines. University Hospitals Leuven, our network of research hospitals, provides high-quality healthcare and develops new therapeutic and diagnostic insights with an emphasis on translational research. The university welcomes more than 50,000 students from over 140 countries. The KU Leuven Doctoral Schools train approximately 4,500 PhD students.

More information: http://www.kuleuven.be/mediaresources.

KU Leuven

Related Binary Star Articles:

A rising star
It's a tiny marine invertebrate, no more than 3 millimeters in size.
Star's birth may have triggered another star birth, astronomers say
Radio images give new evidence that a jet of material from one young star may have triggered the gas collapse that started another young star.
Astronomers perform largest-ever survey of high-mass binary star systems
An international group of astronomers led by researchers at the University of São Paulo's Institute of Astronomy, Geophysics & Atmospheric Sciences (IAG-USP) in Brazil, have just identified and characterized 82 new high-mass binaries located in the Tarantula Nebula, also known as 30 Doradus, in the Large Magellanic Cloud.
Speeding star gives new clues to breakup of multi-star system
Three stars have been discovered that now hold the record as the youngest-known examples of a super-fast star category.
Hubble discovery of runaway star yields clues to breakup of multiple-star system
A gravitational tussle, ended with a multi-star system breaking apart and at least three stars being ejected in different directions.
More Binary Star News and Binary Star Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...