Nav: Home

Artificial lung cancer tissue could help find new drug treatments

February 25, 2019

A 3D hydrogel created by researchers in U of T Engineering Professor Molly Shoichet's lab is helping University of Ottawa researchers to quickly screen hundreds of potential drugs for their ability to fight highly invasive cancers.

Cell invasion is a critical hallmark of metastatic cancers, such as certain types of lung and brain cancer. Fighting these cancers requires therapies that can both kill cancer cells as well as prevent cell invasion of healthy tissue. Today, most cancer drugs are only screened for their ability to kill cancer cells.

"In highly invasive diseases, there is a crucial need to screen for both of these functions," says Shoichet. "We now have a way to do this."

Shoichet and her team are internationally known for their work on hydrogels, jello-like materials based on hyaluronic acid, a biocompatible substance commonly used in cosmetics. In the past, they have used hydrogels to enhance stem cells that are injected in the body to overcome disease or degeneration.

In their latest research, the team used hydrogels to mimic the environment of lung cancer, selectively allowing cancer cells, and not healthy cells, to invade. In their latest research, the team used hydrogels to mimic the environment of lung cancer, selectively allowing cancer cells, and not healthy cells, to invade. This emulated environment enabled their collaborators in Professor Bill Stanford's lab at University of Ottawa to screen for both cancer-cell growth and invasion. The study, led by Roger Y. Tam, a research associate in Shochet's lab, was recently published in Advanced Materials.

"We can conduct this in a 384-well plate, which is no bigger than your hand. And with image-analysis software, we can automate this method to enable quick, targeted screenings for hundreds of potential cancer treatments," says Shoichet.

One example is the researchers' drug screening for lymphangioleiomyomatosis (LAM), a rare lung disease affecting women. Shoichet and her team were inspired by the work of Green Eggs and LAM, a Toronto-based organization raising awareness of the disease.

Using their hydrogels, they were able to automate and screen more than 800 drugs, thereby uncovering treatments that could target disease growth and invasion.

In the ongoing collaboration, the researchers plan to next screen multiple drugs at different doses to gain greater insight into new treatment methods for LAM. The strategies and insights they gain could also help identify new drugs for other invasive cancers.

Shoichet, who was recently named a Distinguished Woman in Chemistry or Chemical Engineering, also plans to patent the hydrogel technology.

"This has, and continues to be, a great collaboration that is advancing knowledge at the intersection of engineering and biology," says Shoichet.
-end-


University of Toronto Faculty of Applied Science & Engineering

Related Lung Cancer Articles:

AI helps to fight against lung cancer
Lung cancer has been the leading cause of cancer-related deaths in 2015 in United States.
Free lung-cancer screening in the Augusta area finds more than double the cancer rate of previous screenings
The first year of free lung cancer screening in the Augusta, Ga., area found more than double the rate seen in a previous large, national study as well as a Massachusetts-based screening for this No.
Antioxidants and lung cancer risk
An epidemiological study published in Frontiers in Oncology suggests that a diet high in carotenoids and vitamin C may protect against lung cancer.
Lung cancer may go undetected in kidney cancer patients
Could lung cancer be hiding in kidney cancer patients? Researchers with the Harold C.
Hitgen and Cancer Research UK's Manchester Institute enter license agreement in lung cancer
Cancer Research UK, Cancer Research Technology (CRT), the charity's commercial arm, and HitGen Ltd, a privately held biotech company focused on early drug discovery, announced today that they have entered into a licence agreement to develop a novel class of drugs against lung cancer.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Huntsman Cancer Institute research holds promise for personalized lung cancer treatments
New research from scientists at Huntsman Cancer Institute (HCI) at the University of Utah uncovered distinct types of tumors within small cell lung cancer that look and act differently from one another.
High levels of estrogen in lung tissue related to lung cancer in postmenopausal women
Researchers from Kumamoto University, Japan have found that postmenopausal women with multicentric adenocarcinoma of the lung have a higher concentration of estrogen in non-cancerous areas of the peripheral lung than similar women diagnosed with single tumor lung cancer.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Pericardial window operation less efficient in cases of lung cancer than any other cancer
Pericardial window operation, a procedure, where abnormal quantity of malignant fluid, surrounding the heart, is drained into the neighbouring chest cavity, is commonly applied to patients diagnosed with cancer.

Related Lung Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".