Nav: Home

Uncovering the origins of cultivated strawberries

February 25, 2019

EAST LANSING, Mich. - Until now, little has been known about the evolutionary origins of the cultivated garden strawberry. Whereas most species, including humans, are diploid with two copies of the genome - one copy from each parent - strawberry is an octoploid, with eight complete copies of the genome that were contributed by multiple, distinct parental species.

In a new study published in Nature Genetics, researchers now unveil how the strawberry became an octoploid, as well as the genetics that determine important fruit quality traits. What researchers uncovered is a complex evolutionary history that started long ago on opposite sides of the world.

"For the first time, analysis of the genome enabled us to identify all four extant relatives of the diploid species that sequentially hybridized to create the octoploid strawberry," said Patrick Edger, MSU assistant professor of horticulture and co-author on the paper. "It's a rich history that spans the globe, ultimately culminating in the fruit so many enjoy today."

These four diploid species are native to Europe, Asia and North America, but the wild octoploids are almost exclusively distributed across the Americas. The results presented in the paper suggest a series of intermediate polyploids, tetraploid and hexaploid that formed in Asia, prior to the octoploid event that occurred in North America, involving the hexaploid and a diploid species endemic to Canada and the United States. This makes the strawberry relatively unique as one of only three high-value fruit crops native to the continent.

Breeders began propagating these octoploids around 300 years ago. Since then, they have been used around the world to further enhance variety development. However, Edger hypothesized that -- as with several other polyploids -- an unbalanced expression of traits contributed by each diploid parental species, called subgenome dominance, would likely also be present in the octoploid strawberry. He was right.

"We uncovered that one of the parental species in the octoploid is largely controlling fruit quality and disease resistance traits," Edger said. "Knowing this, as well having identified the genes controlling various target traits, will be helpful in guiding and accelerating future breeding efforts in this important fruit crop."

The genomic discoveries provided by this study will advance the trait selection process, bringing about a more precise method of breeding for this important worldwide crop. The genome will enable studies that were previously unthinkable in strawberry, and will be a catalyst for tackling difficult breeding and genetics questions.

"Without the genome we were flying blind," said Steven Knapp, UC-Davis plant scientist and study co-author. "I remember the first time I saw a visualization of the assembled genome, which went from a complex jumble of DNA molecules of 170 billion nucleotides to an organized and ordered string of 830 million base pairs. That was a special moment that changed everything for us in strawberry."

Knapp said that, historically, scientists studying complex biological phenomena in strawberry have tended to focus on diploid relatives because of the complexity of the octoploid, even though genetic analyses in the octoploid are actually straightforward once one has a good road map.

"We have been on a crusade to shift the focus in the basic research community to the commercially important octoploid," Knapp said. "The wild octoploid ancestors, together with cultivated strawberry, provide a wellspring of natural genetic diversity to support biological and agricultural research."

Traditional breeding has been highly successful in strawberry, yielding outstanding modern cultivars that have been the catalyst for expanding production worldwide. As with other crops, many challenges remain that will require breeders to continually redesign cultivars and introduce genes from wild species and other exotic sources to meet new challenges. The genome is an essential vehicle for applying predictive, genome-informed approaches in strawberry breeding and cultivar development.

For the U.S., improved varieties could provide a boon to an already-thriving business. The U.S. is the global leader in strawberry production, a yield comprising roughly one-third of the world's total. In 2016, the country produced more than 1.5 million tons.

The sequencing and analysis of the cultivated strawberry genome, exposing a wealth of new information about its origin and traits, is the product of an international team supported by Michigan State University AgBioResearch, UC Davis, the United States Department of Agriculture, the California Strawberry Commission and the National Science Foundation.
(Note to media: please include a link to the original paper in online coverage:

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at

Michigan State University

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".