Nav: Home

Breeding a better strawberry

February 25, 2019

Consumers want strawberries to be red, sweet, ripe and juicy, like those fresh picked from a garden. Suppliers want them to be easy to handle and ship, without getting squished. Commercial strawberry growers need their crops to be high-yielding and disease-resistant.

An international team of scientists led by the University of California, Davis, and Michigan State University has taken a step that might allow breeders to grow a strawberry to satisfy all those needs. They've sequenced and analyzed the genome of the cultivated strawberry, which will provide a genetic roadmap to help more precisely select desired traits. The study was published today (Feb. 25) in the journal Nature Genetics.

"Without the genome we were flying blind," said Steven Knapp, professor of plant sciences and director of the UC Davis Strawberry Breeding Program. "It was like having a library of books, but all the books' pages were blank."

Protecting strawberries from disease

The U.S. is the world's largest producer of strawberries, and almost 90 percent of them are grown in the cool, coastal climates of California. Growers are constantly struggling to fight off diseases like Fusarium wilt, Verticillium wilt and Macrophomina without having to use fumigants. The assembled genome will allow scientists to pinpoint specific genes that can protect the plant against diseases. Strawberries can also have diseases that may involve several different genes, similar to complex diseases in humans. Sequencing the genome will help unravel that complexity.

"The genome sequence is powerful because it provides scientists with barcodes for nearly all the genes in strawberry. We can use that information to identify genes that play an important role in traits of agricultural importance," said Knapp.

Similarly, scientists may also be able to find genes in the strawberry that lead to increased flavor or aroma for the consumer, while maintaining the firmness and shelf life for producers.

Origins of the strawberry

Patrick Edger, co-corresponding author with Michigan State University, and his team also deciphered the complex evolutionary history of the cultivated strawberry. While humans are diploid species, meaning each cell contains two complete sets of chromosomes, one from each parent, the cultivated strawberry is an octoploid. Each cell in a strawberry plant contains eight complete sets of chromosomes, so untangling its evolution is a feat.

"Strawberry has a rich history that spans the globe, ultimately culminating in the fruit we enjoy today," said Edger.
-end-
Other UC Davis authors in the study include postdoctoral scholars Thomas Poorten and Michael Hardigan. The study was funded by the USDA National Institute of Food and Agriculture, the National Science Foundation, and the California Strawberry Commission.

University of California - Davis

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.