Nav: Home

Discovery of colon cancer pathway could lead to new targeted treatments

February 25, 2019

University of Massachusetts Amherst food science researchers have pinpointed a set of enzymes involved in tumor growth that could be targeted to prevent or treat colon cancer.

"We think this is a very interesting discovery," says Guodong Zhang, assistant professor of food science, whose study was published in the journal Cancer Research. "Our research identifies a novel therapeutic target and could help to develop novel strategies to reduce the risks of colon cancer."

Colon cancer is the third most common cancer and the second leading cause of cancer-related death in the United States, according to the Centers for Disease Control and Prevention, claiming some 50,000 lives each year. Those statistics emphasize the need to discover new cellular targets that are crucial in the development of colon cancer, Zhang says.

In their study, UMass Amherst researchers tested their hypothesis that once present, colon cancer was increased by enzymes known as cytochrome P450 (CYP) monooxygenases and the fatty acid metabolites they form, epoxyoctadecenoic acids (EpOMEs). The researchers compared healthy mice and mice with colon cancer by performing metabolomics, a comprehensive and complex analysis of metabolites, which are produced when food and chemicals are broken down.

In recent years, metabolomics has emerged as a powerful technology in precision medicine because it can offer a detailed picture of biological processes and molecular phenotypes, or characteristics. Precision medicine tailors treatment to an individual's unique genetic and molecular profile.

As they suspected, the researchers found that certain fatty acid metabolites were more abundant in colon cancer. "If a mouse has colon cancer, the plasma and colon concentrations of EpOMEs are very dramatically increased and the EpOME-producing enzymes, CYP monooxygenases, are overexpressed in the colon," Zhang says.

Researchers also studied human colon cancer cells, comparing them to normal colon cells, and found the same results: an overexpression, or plethora, of the CYP monooxygenase enzymes.

Next, using pharmacological and genetic approaches, the researchers removed or inhibited the CYP monooxygenase enzymes in mice with colon cancer and found that tumor growth was suppressed. "If you block the enzyme, colon cancer can be significantly reduced," Zhang says.

In an effort to determine which metabolites were involved in the colon cancer-enhancing effects, researchers studied the biological actions of CYP monooxygenase metabolites. In an in vitro test, they found that EpOME, but not other CYP monooxygenase metabolites, increased inflammation in both inflammatory and colon cancer cells. They then treated cancer-induced mice with EpOME and found an increase in the number and size of tumors. "We showed that at a low dose this metabolite can make colon cancer more aggressive," Zhang says.

Taken together, the results of the research demonstrate "that the previously unappreciated CYP monooxygenase pathway" could be explored for preventing or treating colon cancer, Zhang concludes.

He points out that previous studies have shown that some FDA-approved drugs inhibit CYP monooxygenases, including Micardis, a blood pressure medication, and Lopid, which is used to lower cholesterol. "That suggests that these drugs could be repurposed for preventing or treating colon cancer," Zhang says. "And novel monooxygenase inhibitors could be developed for use in humans."

Using data from his groundbreaking research, Zhang has received a $406,000 USDA grant to study how dietary fats may regulate colon cancer. EpOMEs are metabolites of linoleic acid, which are found in vegetable oils and red meat.

"Based on our findings, overconsumption of linoleic acid could increase tissue concentrations of EpOMEs, which have potent effects to exaggerate inflammation and tumor growth in the colon," Zhang says.

More research is needed in animal models, which can be controlled more easily than human studies. "We need to better understand this pathway in colon cancer, which ultimately may help us suggest nutritional and therapeutic approaches to reduce the risks of colon cancer," Zhang says.
-end-
The co-first authors of this paper include Weicang Wang and Yuxin Wang, who both work in Zhang's laboratory. Other UMass Amherst investigators include Haixia Yang, Katherine Z. Sanidad, Mingyue Song, Heather A. Bisbee, Guanjun Nan, Jianan Zhang, Lisa M. Minter, Daeyoung Kim and Hang Xiao.

University of Massachusetts at Amherst

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...