Nav: Home

Material that shields beetle from being burned by its own weapons, holds promise

February 25, 2019

Carabid beetles produce caustic chemicals they spray to defend themselves against predators, and the compound that protects their bodies from these toxic substances shows promise for use in bioengineering or biomedical applications, according to Penn State researchers.

The family Carabidae represents an extremely diverse line of insects, with almost 40,000 species. One of the traits that allows them to thrive is a unique gland system. It manufactures, stores and propels toxic chemicals -- such as formic acid, phenolics and concentrated hydrogen peroxide -- to ward off insect, amphibian and even small mammalian predators that want to eat the beetles.

Located in the abdomen, the pygidial glands consist of defensive-chemical-producing lobes, which are connected to a muscularized reservoir chamber via a long collecting duct. In most carabid beetles, this reservoir opens with a duct at the tip of the abdomen. The tissues that comprise the gland system and contain the defensive chemicals have long been a mystery to entomologists.

"We had no idea what these tissues were made of," said Tanya Renner, assistant professor of entomology, whose research group in the College of Agricultural Sciences recently discovered that the elastomeric protein resilin allowed carabid beetles to be the chemists of the insect world. "They produce more than 250 different compounds to protect themselves."

No previous studies suggested how the insects are able to avoid damage to gland components caused by potential stress generated from reservoir-pump contractions or the corrosive effects of the defensive chemicals they contain. However, using an investigative process pioneered in previous Penn State entomological research -- autofluorescence-based laser scanning microscopy -- researchers found the answer.

Using this method, during which tissues emit different wavelengths of light depending upon their contents, the researchers closely examined Pennsylvania ground beetles. They found the tissues in the glandular system transporting the defensive chemicals to be rich in soft, rubbery resilin, a compound found in many insects and other arthropods. Resilin provides elasticity to mechanically active tissues such as flea leg joints or locust wing-hinges. But resilin was not previously known to be in beetle glandular systems.

The beetles can spray their pygidial gland contents a distance many times their body length, noted lead researcher Adam Rork, doctoral student in entomology. When Pennsylvania ground beetles are not defending themselves they are friends of agriculture, consuming up to their body weight daily, eating pests such as aphids, moth and beetle larvae, as well as slugs and snails.

Rork collected ground beetles for the study -- the findings of which were published today (Feb. 25) in Arthropod Structure & Development -- from agricultural fields a few miles from Penn State's University Park campus. He dissected the insects and prepared the abdominal tissues for scanning at the Penn State Microscopy and Cytometry Facility.

He suggested that carabid beetle pygidial glands -- rich in resilin -- are a key innovation and evolutionary adaptation that has allowed one of the animal kingdom's largest families to survive through the ages.

"While much work has been done to describe the morphology of these glands in many subfamilies, there has been little work done on their tissue composition," he said. "Our findings are crucial to understanding not only how these structures evolved, but also how they withstand the stress of containing and ejecting cytotoxic chemicals."

Beyond advancing the understanding of insect tissues' composition, Renner believes resilin is a compound that is likely to be used in future bioengineering and biomedical applications due to its unusual properties. She explained that there is currently interest among scientists in the compounds that insects and spiders produce because these structures have evolved and proven they are strong enough to hold up in the real world.

"They persist and are often better than synthetics," she said. "Since it is impermeable, highly resistant to chemicals and flexible, resilin appears to be a strong candidate for a barrier material in applications where we need to keep two different chemicals away from each other but within the same environment."

Another potential use is in tissue engineering, Rork added. Resilin has many similarities with elastin, a protein found in human bodies, and could be used to design new tissue for people with degenerative diseases or injuries.

This research was made possible by the Penn State Microscopy and Cytometry Facility, Renner said, which offers easy access and training for students to sophisticated instruments.

"It's not just the infrastructure but the staff there available to students that is so unusual -- that's what makes Penn State entomology so special."
Also involved in the research was István Mikó, University of New Hampshire, formerly a research associate in the Department of Entomology at Penn State.

The National Science Foundation supported this work.

Penn State

Related Beetles Articles:

Secret of why jewel scarab beetles look like pure gold, explained by physicists
The secrets of why central-American jewel scarab beetles look like they are made from pure gold, has been uncovered by physicists at the University of Exeter.
Beetles spark development of color-changing nanoparticles for commercial use
Inspired by the varying colors that gleam off of beetle shells, scientists have developed color-shifting nanoparticles that can change hue even after being embedded into a material.
Fossil beetles suggest that LA climate has been relatively stable for 50,000 years
Research based on more than 180 fossil insects preserved in the La Brea Tar Pits of Los Angeles indicate that the climate in what is now southern California has been relatively stable over the past 50,000 years.
Convergent con artists: How rove beetles keep evolving into army ant parasites
Marauding across the forest floor, aggressive army ant colonies harbor hidden enemies in their ranks -- parasitic beetles.
Specialized beetles shed light on predator-prey associations in the Cretaceous
A research team led by researchers from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS) found a new morphologically specialized beetle from the mid-Cretaceous Burmese amber, shedding new light on the predator-prey associations in the late Mesozoic terrestrial ecosystem.
It takes 2 to tango: Beetles are equal partners in mating behavior
Beetles that copulate with the same mate as opposed to different partners will repeat the same behavior, debunking previous suggestions that one sex exerts control over the other in copulation, new research has found.
Beetles born on the edge make invasion faster
Rice University ecologists find that rapid evolution can cause biological invasions to spread faster and with more variability.
The dirt on packaged rhino beetles
Bags of commercial potting soil are irresistible to beetles.
Using sound to stop destructive beetles in their tracks
What would the paradise of Hawaii be without swaying coconut palms, with succulent fruit that is almost synonymous with the tropical island?
Meet the unsung heroes of dung! Beetles found to reduce survival of livestock parasites
Scientists from the University of Bristol have found that dung beetles can help farmers by reducing the development and survival of parasites in cowpats that cause serious illness in cattle during the summer months.

Related Beetles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...