Nav: Home

How genetic background shapes individual differences within a species

February 25, 2019

Study reveals how genetic background influences trait inheritance laying the grounds for predicting personal risk of disease.

Almost every family has a hard-drinking, bacon-loving, exercise-averse relative who despite all odds lived happily to a ripe old age while another perished before their time despite being mindful about their health. Looking at their genomes, it would be impossible to tell who's the lucky one.

This is because of genetic background--countless and mostly subtle differences in the genomes of any two people, which affect gene function in ways scientists don't yet understand.

A new study led by investigators Brenda Andrews and Charles Boone, professors at the University of Toronto's Donnelly Centre for Cellular and Biomolecular Research begins to unpick how genetic background shapes the differences between members of the same species. Andrews is also Director of the Centre and both are professors in the U of T's Department of Molecular Genetics and are Senior Fellows of the Genetic Networks program at the Canadian Institute for Advancement of Research. Boone is also a co-Director of the same CIFAR program. The team also included Gerry Fink, professor of genetics at MIT and member of the Whitehead Institute.

Their findings are published in the journal Proceedings of the National Academy of Science.

"Genetic background confounds our ability to interpret the information stored in an individual genome," says Andrews. It also makes it hard for physicians to predict disease severity in relatively straightforward cases where a disease-causing gene is well known. Two people carrying a same mutation that causes cystic fibrosis, an inherited lung disorder, can develop a mild and a severe form of disease due to the differences between their genetic backgrounds.

With 3 million differences in the DNA code between any two people, the study of genetic background effects in humans is still a daunting prospect. But scientists are beginning to make headway by looking at simpler organisms such as yeast.

"Genetic background has the power to make the original phenotype (a physical outcome of gene function) less or more severe," says Jing Hou, a postdoctoral fellow in the lab who spearheaded the study. This is true for human diseases and it is also true in yeast which is a very good model to study this." This is because the yeast genome is smaller than human and therefore easier to study.

To begin to unpick the genetic background effects, Hou compared how gene mutations manifest themselves in two closely related yeast strains, S288c and sigma1278b, SC and Σ from here, respectively. The two strains are 0.2 per cent different at the DNA level, which is about the same amount of genetic diversity between any two people. In an earlier work, the Boone and Andrews labs, in collaboration with Fink's group, established that mutations in 57 genes, about one percent of all yeast genes, have different outcomes between SC and Sigma, causing cell death in either one or the other strain, but not both. These genes are called "conditional lethals" and whether or not a cell needs them depends on other, so-called modifier genes. But which ones?

By mating the two strains, Hou was able to identify these modifier genes thanks to their ability to mask the damaging mutations and rescue survival of the hybrid progeny.

Hou found that while most conditional lethal genes have multiple modifiers, whose effects are more complex and harder to establish, some have only one modifier and are easier to study. This is the case with CYS3 and CYS4 genes, which help make cysteine, an essential amino acid. Both CYS3 and CYS4 are conditionally lethal in Sigma, but not in the SC strain, which means that Sigma cells die when either gene is missing. Hou discovered that this is thanks to a single modifier gene called OPT1, which works downstream from the CYS genes and can compensate for their loss in the SC strain. Sigma cells happen to carry a mutation in the OPT1 gene and this makes them fully reliant on the CYS genes to produce cysteine.

In another experiment, Hou looked across 20 different yeast strains, from about 1000 naturally found isolates whose genomes have been sequenced. She found a different modifier of the CYS genes in another strain used in the making of Japanese rice wine sake.

With all this information, Hou was able to scan the genomes of all 1000 yeast isolates and accurately guessed which other strains will act like Sigma or the Sake yeast and be completely reliant on the CYS genes to survive. This is similar to being able to single out, from 1000 patients with the same genetic disorder, those individuals who have a higher chance of developing a more severe form of disease.

Being able to predict a biological outcome from genome sequence alone is one of the goals of precision medicine and this early work in yeast raises hopes that similar studies will be possible for human cells.

"Just based on sequence and the knowledge of this pathway we could predict gene essentiality across the whole species," says Hou. "I think we will be able to predict human risk of disease if we have good enough knowledge of how genes work together in pathways." The studies of human gene interactions are only just beginning, however.

For Hou, the yeast work continues and on a much bigger scale. With Guihong Tan, a research associate in the lab, she is working to identify all the genes across 200 isolates whose effects are modified by the genetic background. Tan thinks this number will be 800 genes, but Hou is more conservative in her estimate. "I think we'll find about 200," she says. It's an uncharted territory and the bets are on, with a bottle of champage as prize that Hou hopes to pop once they collect all the data.

University of Toronto

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".