Nav: Home

Pink or brown?

February 25, 2019

They're neither white and gold or black and blue. But in an optical puzzle akin to The Dress, colourful snails are causing scientists at the University of Nottingham to turn to technology to definitively decide whether some snails' shells are pink or brown.

The beautifully-hued Cepaea nemoralis - commonly known as grove snails - are found all over Europe in a range of colours, from yellow to pink to brown, with some also having 'humbug' style banding patterns.

But new research published in the academic journal Heredity, shows that differences in the way that the humans see and categorise colour, often makes it tricky to be sure about the colour of snail shells, leading to heated debate among scientists.

The problem of how to classify the colours has important implications for the study of the evolution of snails shell colour in response to factors including warming climate and hiding from predators.

Dr Angus Davison, Associate Professor and Reader in Evolutionary Genetics in the University's School of Life Sciences, who led the study, said: "The shell patterns and colour are hugely variable - almost like a snail fingerprint. As scientists, to ensure the accuracy of our studies and the subsequent interpretation, it is important that we have a reproducible measure of colour."

"The problem is that there are obvious differences in how humans perceive and categorise their colour, making it very difficult to compare the different types".

Over the past century, the study of animal colour has been critical in helping us to understand the principles of biology, particularly in relation to genetics and evolution. Studies on the distribution and the impact of colour on how predators may identify their prey have shaped our understanding of how natural and sexual selection operate in wild populations and the impact of climate change.

These snails - which are the second most common large snail in UK, and often found in gardens and hedgerows - have also been used in an "Evolution Megalab" experiment in which citizen scientists collect the snails and record the colour. Scientists compare the colour over time - there is a clear indication that the proportions of the different shell types are changing. But these citizen scientists face the same problem in classifying the colours.

Previous studies on grove snails have revealed that they can be sorted into roughly three colour groups - yellow, brown and pink.

It might be sensible to assume that yellow snails are found in dry, arid grasses where they can effectively blend into the background while their brown counterparts may stick to darker woodland environments to camouflage them. The snails uses their colour to evade predators - i.e. as camouflage - and to avoid overheating in open environments.

But surveys of the snails have shown that it's not always that simple - different coloured snails are found across a range of environments.

The colour may also have a role in how predators, particularly birds like song thrushes, choose their prey. Birds develop a preference for the commonest colour of snail over time, and so the rarer types escape predation.

To enable scientists to study the nuances of these issues accurately, they need a way of accurately sorting them into colour groups.

In the Nottingham study, grove snails from Britain and mainland Europe were categorised by Dr. Davison and PhD student Hannah Jackson, by eye.

The same snails were then analysed using a spectrometer, a machine that aims light at the snails, and measures the spectrum of light reflected from the shells.

Using these methods, the scientists were able to cluster the snails into brown, pink and yellow groups and this was compared to how the scientists had categorised the same snails by the naked eye.

The results showed that humans were largely capable of accurately categorising yellow snails but were less successful in identifying which snails were brown or pink. They also disagreed amongst themselves which were pink and which were brown.

The work provides scientists with a baseline measure for further studies into animal colour and the genes which underpin these variations.
-end-


University of Nottingham

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.