Nav: Home

New pieces added to the molecular puzzle of rheumatoid arthritis

February 25, 2020

Walter and Eliza Hall Institute researchers have revealed new details about how joint inflammation evolves in rheumatoid arthritis, and the cells that prolong the inflammatory attack.

In both laboratory models and human clinical samples, the research team pinpointed immune cells called natural killer (NK) cells as an unexpected source of the inflammatory protein GM-CSF in rheumatoid arthritis, the first clue that these cells contribute to inflammatory autoimmune diseases. The research also explained how GM-CSF signals to other immune cells to prolong joint inflammation, and how GM-CSF signalling to immune cells is kept in check in healthy joints.

These discoveries could indicate potential new therapeutic targets for reducing joint inflammation in rheumatoid arthritis, and could potentially reduce inflammation in other autoimmune disease such as multiple sclerosis.

The research was published in the Journal of Experimental Medicine by a team co-led by Professor Ian Wicks, Professor Nicholas Huntington and Dr Cynthia Louis, with Dr Fernando Souza-Fonseca-Guimaraes.

At a glance
  • The cell signalling protein GM-CSF causes inflammation that occurs in joints during rheumatoid arthritis.
  • Our researchers have identified natural killer (NK) cells as a major source of GM-CSF in rheumatoid arthritis, the first time these cells have been implicated in an autoimmune disease.
  • The team also identified the protein CIS as a key molecular brake that dampens GM-CSF activity and inflammation, revealing a potential new therapeutic avenue for inflammatory diseases.
A surprising source of GM-CSF

Rheumatoid arthritis is a chronic inflammatory autoimmune disease in which the immune system mistakenly attacks joints and other tissues, causing inflammation, pain and long-term joint damage.

GM-CSF was originally discovered at the Walter and Eliza Hall Institute as a growth factor for blood cells, but it is increasingly recognised as a key inflammatory mediator that drives a number of autoimmune diseases.

Professor Wicks said that his team's earlier research, together with colleagues at the University of Melbourne, had identified the signalling protein GM-CSF as an important contributor to joint inflammation in rheumatoid arthritis. "When we removed GM-CSF, we could see a reduction in inflammation. This finding underpinned the development and current clinical trials of inhibitors of GM-CSF signalling as a new approach to treating rheumatoid arthritis," he said.

"Although we knew that GM-CSF signalling was important in joint inflammation, which cells were producing GM-CSF within joints, and how this protein signalled after binding to its receptor on other immune cells, was not well understood."

Dr Louis said the team discovered that GM-CSF in inflamed arthritis joints was produced by immune cells called natural killer (NK) cells. "This was a surprise because, until now, NK cells were thought to primarily be important for clearing virus-infected or cancer cells," she said. "This is the first time NK cells have been found to contribute to tissue inflammation in autoimmune diseases such as rheumatoid arthritis.

"As well as looking at our laboratory model of arthritis, we examined cells from the joints of people with rheumatoid arthritis and confirmed that NK cells are indeed a significant source of GM-CSF in patients.

"This discovery has solved one part of the puzzle about how inflammation occurs in rheumatoid arthritis," Dr Louis said.

Filling in the gaps

The team revealed that the protein CIS is important for 'switching off' GM-CSF signalling, a critical mechanism to restrain destructive inflammation in arthritis.

"In the absence of CIS, we saw hyperactivation of GM-CSF signalling and more severe arthritis," Dr Louis said.

"This research showed that if a new drug that mimics CIS were to be developed, it may help to reduce the debilitating effects of GM-CSF in rheumatoid arthritis, but also in other inflammatory diseases driven by GM-CSF, such as multiple sclerosis."

Professor Wicks said the research revealed new aspects of cell signalling that warranted further investigation. "We're very excited to have progressed our understanding of rheumatoid arthritis and potentially other inflammatory diseases," he said.
-end-
Professor Wicks is joint head of Clinical Translation at the Walter and Eliza Hall Institute and head of Rheumatology at The Royal Melbourne Hospital. Professor Huntington is now at Monash University's Biomedicine Discovery Institute and Dr Souza-Fonseca-Guiamares is now at the University of Queensland Diamantina Institute.

The research was supported by the Australian National Health and Medical Research Council, John T Reid Charitable Trusts and Victorian Government. Scientists involved in the research were also supported by the National Breast Cancer Foundation, Cure Cancer Australia, Harry J Lloyd Charitable Trust, Melanoma Research Alliance, Tour de Cure, Cancer Research Institute and Ian Potter Foundation.

Walter and Eliza Hall Institute

Related Rheumatoid Arthritis Articles:

New pieces added to the molecular puzzle of rheumatoid arthritis
researchers have revealed new details about how joint inflammation evolves in rheumatoid arthritis, and the cells that prolong the inflammatory attack.
Thermal cameras effective in detecting rheumatoid arthritis
A new study, published today in Scientific Reports, highlights that thermal imaging has the potential to become an important method to assess Rheumatoid Arthritis.
Rheumatoid arthritis -- can its onset be delayed or prevented?
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder that leads to significant health issues as well as high treatment costs.
Disease burden in osteoarthritis is similar to rheumatoid arthritis
Osteoarthritis (OA) has traditionally been viewed as a highly prevalent but milder condition when compared with rheumatoid arthritis (RA), and some may believe that it is part of a normal aging process requiring acceptance, not treatment.
Prospect of a new treatment for rheumatoid arthritis
An international research group led by Charité -- Universitätsmedizin Berlin has completed testing a new drug to treat rheumatoid arthritis.
Can rare lymphocytes combat rheumatoid arthritis?
Immunologists at Friedrich-Alexander-Universität Erlangen-Nürnberg have demonstrated that ILC2, a group of rare lymphoid cells, play a key role in the development of inflammatory arthritis.
How environmental pollutants and genetics work together in rheumatoid arthritis
New research documents how chemicals and a certain gene activate an enzyme to increase the risk and severity of RA and bone destruction.
Rheumatoid arthritis meets precision medicine
Scientists are bringing precision medicine to rheumatoid arthritis for the first time by using genetic profiling of joint tissue to see which drugs will work for which patients, reports a new multi-site study.
Causes of death in rheumatoid arthritis patients
Mortality rates were increased for patients with rheumatoid arthritis relative to the general population across all causes of death in a recent Arthritis Care & Research analysis.
Menopause found to worsen symptoms of rheumatoid arthritis
A recent study published in Rheumatology suggests that women with rheumatoid arthritis suffer a greater decline in physical function following menopause.
More Rheumatoid Arthritis News and Rheumatoid Arthritis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.