Nav: Home

Researchers improve safety of lead-based perovskite solar cells

February 25, 2020

Researchers at the National Renewable Energy Laboratory (NREL) and Northern Illinois University (NIU) have developed a technique to sequester the lead used to make perovskite solar cells, a highly efficient emerging photovoltaic technology.

The light-absorbing layer in a perovskite solar cell contains a minute amount of lead. The presence of this toxic material in the developing technology could turn some consumers away when perovskite solar cells become commercially available, said Kai Zhu, a senior scientist in the Chemistry and Nanoscience Center at NREL.

Zhu and other researchers at NREL and NIU outlined their solution in a paper newly published in Nature, titled "On-Device Lead Sequestration for Perovskite Solar Cells."

"This is a big step in the correct direction," Zhu said. His co-authors are Fei Zhang and Joseph Berry of NREL, Haiying He of Valparaiso University, and Xun Li and Tao Xu from NIU. Xu served as the lead researcher from NIU.

"Lead toxicity has been one of the most vexing, last-mile challenges facing perovskite solar cells," Xu said. "Our on-device lead-sequestration method renders a 'safety belt' for this fascinating photovoltaic technology."

A lead-based perovskite solar cell's highest efficiency--its ability to turn sunlight into electricity--runs close to 25%. Without the lead, that efficiency is cut in half.

Silicon solar panels, the industry's dominant technology, contain lead solder, but that lead is not water soluble. The lead used in perovskites can be dissolved in water. While existing analyses show this is not a major concern, the researchers developed a method to ensure the lead is sequestered should a cell become damaged. They coated the front and back of a perovskite solar cell with two different lead-absorbing films. Then, they damaged the two sides of the cell--slashing one with a knife and smashing the other with a hammer.

The researchers then immersed the damaged cells in water of various types, including pure water, acid water, and even flowing water to simulate heavy rain. They found that these lead-absorbing films can prevent more than 96% of lead from leaking into the water from the damaged cells.

The addition of the lead-absorbing layers did not affect the performance of the solar cell, the researchers found.
-end-
The research was funded by the National Science Foundation and the U.S. Department of Energy's Solar Energy Technologies Office.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

DOE/National Renewable Energy Laboratory

Related Solar Cell Articles:

Windows will soon generate electricity, following solar cell breakthrough
Semi-transparent solar cells that can be incorporated into window glass are a 'game-changer' that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.
Ultrathin organic solar cell is both efficient and durable
Scientists have succeeded in creating an ultrathin organic solar cell that is both highly efficient and durable.
Layered solar cell technology boosts efficiency, affordability
Researchers from CU Boulder have created a low-cost solar cell with one of the highest power-conversion efficiencies to date, by layering cells and using a unique combination of elements.
Anti-solar cells: A photovoltaic cell that works at night
What if solar cells worked at night? That's no joke, according to Jeremy Munday, professor in the Department of Electrical and Computer Engineering at UC Davis.
Promising discovery could lead to a better, cheaper solar cell
McGill University researchers have gained tantalizing new insights into the properties of perovskites, one of the world's most promising materials in the quest to produce a more efficient, robust and cheaper solar cell.
Biological material boosts solar cell performance
Next-generation solar cells that mimic photosynthesis with biological material may give new meaning to the term 'green technology.' Adding the protein bacteriorhodopsin (bR) to perovskite solar cells boosted the efficiency of the devices in a series of laboratory tests, according to an international team of researchers.
Experiments show dramatic increase in solar cell output
Researchers at MIT and Princeton have found a way to increase the output of silicon solar cells by allowing a single photon to release two electrons in the silicon.
Winds of change...Solar variability weakens the Walker cell
An international team of researchers has found robust evidence for signatures of the 11-year sunspot cycle in the tropical Pacific.
Improving solar cell efficiency with a bucket of water
Beth Parks has devised an astonishingly simple way to overcome a limitation of solar cells -- a bucket of water.
Solar panels for yeast cell biofactories
In a study in Science, a multidisciplinary team led by Core Faculty member Neel Joshi and Postdoctoral Fellows Junling Guo and Miguel Suástegui at Harvard's Wyss Institute for Biologically Inspired Engineering and John A.
More Solar Cell News and Solar Cell Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.