Scientists develop enzyme produced from agricultural waste for use as laundry detergent

February 25, 2020

An international team of researchers has developed an enzyme produced from agricultural waste that could be used as an important additive in laundry detergents.

By using an enzyme produced from a by-product of mustard seeds, they hope to develop a low-cost naturally derived version of lipase, the second largest commercially produced enzyme, which is used in various industries for the production of fine chemicals, cosmetics, pharmaceuticals and biodiesel including detergents.

Thousands of tons of lipase are used annually for the production of laundry detergents as an additive or to replace the chemical detergents because of its advantage of being eco-friendly and better ability to remove oil stains without harming the texture of the cloth.

Lipase is one of the most rapidly growing industrial enzymes in the market and is worth $590.5million. However, the cost of biotechnologically produced lipases has always been a challenge, mainly due to the high cost of feedstocks.

In this collaborative project, Dr Pattanathu Rahman, a microbial biotechnologist from the Centre for Enzyme Innovation at the University of Portsmouth worked with Professor Subudhi and scientists from the Centre for Biotechnology at Siksha O Anusandhan University in Odisha, India, where Dr Rahman is also a visiting Professor.

They examined a lipase produced from mustard oil cakes, which are the by-products of oil extraction from the mustard seeds. Oil cakes are a very good resource for growth of microbes to produce enzymes. They fermented the oil cakes with the bacteria Anoxybacillus sp. ARS-1, living in a tropical hot spring Taptapani, Odisha, India to produce the lipase enzyme.

Mustard are the third most produced oilseed crops in the world after soybean and palm oil seed. These seeds are produced in tropical countries such as Bangladesh, Pakistan and Northern India. The mustard oil extracted from the seeds are used as cooking oils. Oil cakes that are the by-products of oil extraction contain relatively high amounts of protein with small amounts of anti-nutritional compounds like glucosinolates and their breakdown products, phenolics and phytates.

Dr Rahman said: "We further investigated suitability of the lipase enzyme in detergent formulations. Anoxybacillus sp. ARS-1 produced lipase was found to be stable and resist almost all chemical detergents as well as common laundry detergent such as Ezee, Surf, Ariel and Ghadhi, proving it to be a prospective additive for incorporation in the new detergent formulations."
-end-
The study 'Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive' is published in the journal Preparative Biochemistry & Biotechnology.

University of Portsmouth

Related Oil Articles from Brightsurf:

The first battle for oil in Norway
The world's richest man and the world's largest oil company dominated the petroleum market in Norway long before landmark finds on the Norwegian continental shelf and the Norwegian oil fund.

Oil droplet predators chase oil droplet prey
Oil droplets can be made to act like predators, chasing down other droplets that flee like prey mimicking behavior seen among living organisms.

Healthy oil from wild olives
The oil from wild olive trees has excellent sensorial, physicochemical and stability characteristics from a nutritional point of view, according to an article published in the journal Antioxidants.

Oil-soluble transition metal-based catalysts tested for in-situ oil upgrading
The results of the study showed that the good catalytic properties of the new transition metal catalysts, as well as their low cost and easy accessibility, make them a potential solution in the aquathermolysis reaction and heavy oil recovery.

New method for removing oil from water
Oil poses a considerable danger to aquatic life. Researchers at the Universities of Bonn and Aachen and the Heimbach-GmbH have developed a new technology for the removal of such contaminations: Textiles with special surface properties passively skim off the oil and move it into a floating container.

A sustainable alternative to crude oil
A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production -- a successful example for a more sustainable economy with bio-based materials.

When grown right, palm oil can be sustainable
Turning an abandoned pasture into a palm tree plantation can be carbon neutral, according to a new study by EPFL and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL).

Oil futures volatility and the economy
The drone strike on Saudi Arabia's oil infrastructure has highlighted the fragile and interconnected relationship between crude oil supply and the global economy, with new research bringing these economic ties into greater focus.

All-in-one: New microbe degrades oil to gas
The tiny organisms cling to oil droplets and perform a great feat: As a single organism, they may produce methane from oil by a process called alkane disproportionation.

Marine oil snow
Marine snow is the phenomena of flakes of falling organic material and biological debris cascading down a water column like snowflakes.

Read More: Oil News and Oil Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.