Parasitic worms have armies, and produce more soldiers when needed

February 25, 2020

In estuaries around the world, tiny trematode worms take over the bodies of aquatic snails. These parasitic flatworms invade the snail's body and use its systems to support their colony, sometimes for over a decade, "driving them around like cars," according to senior author Ryan Hechinger, professor of marine sciences at Scripps Institution of Oceanography at the University of California San Diego.

Like many other highly organized animal societies, including bees and ants, trematode colonies form castes to split the workload. Some trematodes, called "reproductives," are larger and do all the reproduction for the colony, while smaller worms with larger mouths known as "soldiers" protect against outside invasion from competing trematodes.

"People think of parasites doing the attacking, not getting attacked," said co-author Mark Torchin, a marine ecologist with the Smithsonian Tropical Research Institute (STRI). "But these parasites have to fight for their homes within their hosts, and deal with the risk of host invasion."

But, for any society with limited resources, this means a trade off - more soldiers means fewer reproductives.

"Animal societies, like trematodes, have to maintain a balance between reproduction and protection," said first author Emlyn Resetarits, a postdoctoral associate at University of Georgia and former PhD student at the University of Texas at Austin and graduate fellow with STRI. "How many reproductive worms should exist in the colony, and how many soldiers? Are these numbers stable, or do they change in response to environmental pressure?"

In a new study published Feb. 26, 2020 in Biology Letters, the research team demonstrated for the first time that the number of soldiers in a trematode colony depends on the local invasion threat, showing that such societies produce greater standing armies in areas of greater threat. This has big implications for understanding how animal societies determine their resource allocation.

"Each trematode colony is built of clones from a single invading worm," said Hechinger, who specializes in the study of ecology and evolution of parasites. "They don't want to share their snail with another trematode, so as their population takes over their host, they start producing soldiers to fight off any potential invaders."

But the real question was whether the trematodes produced more soldier worms when they lived in environments where they were more likely to encounter invaders.

To find out, the researchers collected snails at 38 different sites with varying levels of invasion threat from 12 estuaries along the North American Pacific coast, from Panama to Northern California, and brought them back to the lab for analysis.

There, they dissected over 150 individual snails to count the number of soldier worms in each one, and found that snails collected in locations where there was a high risk of being invaded by other parasites had larger numbers of soldier worms poised to attack any new threat.

This massive sampling effort, funded by graduate fellowships from the National Science Foundation and STRI, included counting trematode worms from six separate species. All but one showed the same pattern of more soldiers in response to higher risk, indicating that this trait is generalizable among trematode species, families, and even orders, providing support that this may be true for other animal societies.

According to Hechinger, parasitic trematodes make excellent animal models for these kinds of experiments. "It's difficult to study even one termite colony, because of its size," he said, "But with trematodes, you can hold 50 colonies in your hand."

"Unlike a lot of organisms, these trematode societies within snails are very reproducible units - they all live in very similar environments, inside the same species of snail," said Resetarits. "You can really get a sense of how many soldiers there are in one colony versus another, and make direct comparisons between different colonies and across species."

Beyond their utility as a model system, understanding the ecology of these snailbound worms is important because they play a large role in the ecosystems where they're found, passing through the food web in snails, fish, and birds, with different species found in different marine animals.

"There are more tons of trematode flesh than bird flesh in these estuaries," said Hechinger. "These worms can be used as an ecological indicator. If you pick up a hundred snails and look at the diversity of trematode parasites inside them and how many are infected, it tells you something about the diversity and abundance of the birds in the area. Understanding these worms helps us understand how energy flows through these food webs."

"Our next steps will be to determine how these worms determine their resource allocation," said Resetarits. "Do individual colonies react and respond to information about the local invasion threat by producing more soldiers, or are the trematode species in high risk locations adapting their soldier allocation on a population level? This will show us how versatile these colonies are, and give us more information about how their societies adapt to external challenges."

"This discovery is not just an interesting research project," said Hechinger. "This serves as a clear demonstration of the utility of using this system as a model to tackle fundamental sociobiological questions."

University of California - San Diego

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to