Astrophysicists use laser guide star adaptive optics

February 26, 2004

LIVERMORE, Calif. -- For the first time, scientists from UC Berkeley and Lawrence Livermore, in conjunction with astrophysicists from the California Institute of Technology, UC Santa Cruz, the National Science Foundation's Center for Adaptive Optics and UC's Lick Observatory, have observed that distant larger stars formed in flattened accretion disks just like the sun.

Using the laser guide star adaptive optics system created by LLNL scientists, the team was able to determine that some of the relatively young yet massive Herbig Ae/Be stars contain biconical nebulae, polarized jets and circumstellar disks. Less massive stars including the sun are believed to be formed in a swirling spherical cloud that collapses into a disk.

The astronomers observed a strongly polarized, biconical nebula 10 arcseconds in diameter around the star LkHa 198 and a polarized jet-like feature in LkHa 198-IR. The star LkHa 233 featured a narrow, unpolarized dark lane similar to an optically thick circumstellar disk. The research appears in the Feb. 27 edition of the journal Science.

The adaptive optics system enables astronomers to minimize the blurring effects of the Earth's atmosphere, producing images with unprecedented detail and resolution. The adaptive optics system uses light from a relatively bright star to measure the atmospheric distortions and to correct for them, but only about 1 percent of the sky contains stars sufficiently bright to be of use. The laser guide star enables astronomers to study nearly the entire sky with the high resolution of adaptive optics.

"Lasers have been developed into powerful tools for everything from surgery to machining," said Claire Max, deputy director of CfAO and an astrophysicist with LLNL's Institute of Geophysics and Planetary Physics. "Now, we are using lasers to observe young stars just after they have formed from their surrounding gas clouds."

Herbig Ae/Be stars are young stars with masses between 1.5 and 10 times that of the sun and are less than 10 million years old, which is young by astronomical standards. While they are fundamentally very luminous, many are so distant that one can't see details of their immediate environments without the use of a laser guide star adaptive optics system. These stars are thought to be the young stage of the massive stars that later experience supernova explosions and trigger star formation in nearby clouds.

Adaptive optics refers to the ability to compensate or adapt to turbulence in the Earth's atmosphere, removing the blurring of starlight. Adaptive optics systems measure the distortions of the light from a star and then remove the distortions by bouncing the light off a deformable mirror, which corrects the image several hundred times per second.

The only laser guide star systems in the world currently being used regularly for astronomy are at the at Lick and W.M. Keck observatories, and were built by LLNL. The sodium dye laser, under the direction of LLNL laser scientists Deanna Pennington and Herbert Friedman, completes the adaptive optics system mounted to Lick's Shane telescope. It is operated by Lick staff.
-end-
Images of the laser guide star at Lick Observatory can be found at http://www.llnl.gov/llnl/06news/NewsMedia/guidestar.html

The observations and development of the laser guide star were funded by the National Science Foundation and the Department of Energy.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Massive Stars Articles from Brightsurf:

Most isolated massive stars are kicked out of their clusters
A pair of University of Michigan studies reveals how some massive stars -- stars eight or more times the mass of our sun--become isolated in the universe: most often, their star clusters kick them out.

Pair of massive baby stars swaddled in salty water vapor
Using ALMA, astronomers spotted a pair of massive baby stars growing in salty cosmic soup.

Hubble observes aftermath of massive collision
What astronomers thought was a planet beyond our solar system, has now seemingly vanished from sight.

On the origin of massive stars
This scene of stellar creation, captured by the NASA/ESA Hubble Space Telescope, sits near the outskirts of the famous Tarantula Nebula.

Two stars merged to form massive white dwarf
A massive white dwarf star with a bizarre carbon-rich atmosphere could be two white dwarfs merged together according to an international team led by University of Warwick astronomers, and only narrowly avoided destruction.

A massive star's dying breaths
Betelgeuse has been the center of significant media attention lately.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Most massive neutron star ever detected, almost too massive to exist
Astronomers using the GBT have discovered the most massive neutron star to date, a rapidly spinning pulsar approximately 4,600 light-years from Earth.

Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.

Best of both worlds: Asteroids and massive mergers
University of Arizona researchers are using the Catalina Sky Survey's near-Earth object telescopes to locate the optical counterparts to gravitational waves triggered by massive mergers.

Read More: Massive Stars News and Massive Stars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.