Nav: Home

The secret to tripling the number of grains in sorghum and perhaps other staple crops

February 26, 2018

Cold Spring Harbor, NY -- A simple genetic modification can triple the grain number of sorghum, a drought-tolerant plant that is an important source of food, animal feed, and biofuel in many parts of the world. In new research reported today in Nature Communications, scientists at Cold Spring Harbor Laboratory (CSHL) have figured out how that genetic change boosts the plant's yield: by lowering the level of a key hormone, generating more flowers and more seeds. Their discovery points toward a strategy for significantly increasing the yield of other grain crops.

Doreen Ware, Ph.D., a CSHL Adjunct Associate Professor and research scientist with USDA's Agricultural Research Service (ARS), led the research, together with ARS colleague Zhanguo Xin, Ph.D. Their study was focused on high-yield strains of sorghum that were generated several years ago by Dr. Xin. An unknown genetic mutation introduced by chemical mutagenesis - a method used for many decades by breeders and researchers to induce genetic variations in plants - resulted in an increase in the number of grains, i.e., seeds contained within fruits, that each plant produced.

Like many cereal crops, sorghum's grains are produced in clusters of flowers that develop from an elaborately branched structure at the top of the plant called a panicle. Each panicle can produce hundreds of flowers. There are two types of flowers, and usually only one of these, known as the sessile spikelet (SS), is fertile. The other flower type, called pedicellate spikelets (PS), do not make seeds. In the modified plants Dr. Xin produced, however, both sessile and pedicellate spikelets produced seeds, tripling each plant's grain number.

Ware and her team wanted to understand what caused this dramatic change. By completely sequencing the genomes of the modified plants, they found that the key mutations affected a gene that regulates hormone production. Plants carrying the mutation produce abnormally low levels of a development-regulating hormone called jasmonic acid, particularly during flower development.

Through subsequent experiments, the team learned that jasmonic acid prevents pedicellate spikelets from producing seeds. "So when the plant hormone is low, we get seeds set on every single one of the flowers. But when the plant hormone is high, we have a reduced number of fertile flowers, ending up in a reduced number of seeds," explains Dr. Yinping Jiao of the Ware lab, co-first author on the new paper.

Now that the team has uncovered the biological changes that triple sorghum's grain production, they hope to apply the same strategy to increase grain production in related plants that are vital in the global food supply, such as rice, corn, and wheat. The knowledge will help guide crop improvement through traditional breeding practices as well as approaches that take advantage of genome editing technologies, Ware says.
-end-
Funding: United Sorghum Checkoff program; U.S. Department of Agriculture Agricultural Research Service; National Research Foundation of Korea

Citation: Jiao J et al, "MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway," appears in Nature Communications on February xx, 2018.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program annually hosts more than 12,000 scientists. The Laboratory's education arm also includes an academic publishing house, a graduate school and the DNA Learning Center with programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Cold Spring Harbor Laboratory

Related Sorghum Articles:

Overcoming carbon loss from farming in peatlands
Miscanthus, willow found as good biomass crops to add carbon to vulnerable soils.
Local genetic adaption helps sorghum crop hide from witchweed
Sorgum crops in areas where the parasite witchweed is common have locally adapted to have mutations in a particular gene, which helps the plant resist the parasite.
Switching cereals in India for improved nutrition, sustainability
A new study offers India a pathway to improve nutrition, climate resilience and the environment by diversifying its crop production.
Sorghum study illuminates relationship between humans, crops and the environment in domestication
A new study illustrates the concept of a domestication triangle, in which human genetics interact with sorghum genetics and the environment to influence the traits farmers select in their crops.
Less rice, more nutritious crops will enhance India's food supply
India can sustainably enhance its food supply if its farmers plant less rice and more nutritious and environmentally-friendly crops, including finger millet, pearl millet, and sorghum, according to a new study from the Data Science Institute at Columbia University.
Genomic gymnastics help sorghum plant survive drought
A new study provides the first detailed look at how the sorghum plant exercises exquisite control over its genome -- switching some genes on and some genes off at the first sign of water scarcity, and again when water returns -- to survive when its surroundings turn harsh and arid.
Anthracnose alert: How bacteria prime fifth-biggest global grain crop against deadly fungus
Sorghum anthracnose devastates crops of the drought- and heat-resistant cereal worldwide.
Too much sugar doesn't put the brakes on turbocharged crops
Plants make sugars to form leaves to grow and produce grains and fruits through the process of photosynthesis, but sugar accumulation can also slow down photosynthesis.
Researchers double sorghum grain yield to improve food supply
A set of genes that make up the biosynthetic pathway controlling hormone production in sorghum plants can influence the number of flowers and seeds produced per plant.
Discovery of sorghum gene that controls bird feeding could help protect crops
A single gene in sorghum controls bird feeding behavior by simultaneously regulating the production of bad-tasting molecules and attractive volatiles, according to a study publishing Sept.
More Sorghum News and Sorghum Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.