Nav: Home

The secret to tripling the number of grains in sorghum and perhaps other staple crops

February 26, 2018

Cold Spring Harbor, NY -- A simple genetic modification can triple the grain number of sorghum, a drought-tolerant plant that is an important source of food, animal feed, and biofuel in many parts of the world. In new research reported today in Nature Communications, scientists at Cold Spring Harbor Laboratory (CSHL) have figured out how that genetic change boosts the plant's yield: by lowering the level of a key hormone, generating more flowers and more seeds. Their discovery points toward a strategy for significantly increasing the yield of other grain crops.

Doreen Ware, Ph.D., a CSHL Adjunct Associate Professor and research scientist with USDA's Agricultural Research Service (ARS), led the research, together with ARS colleague Zhanguo Xin, Ph.D. Their study was focused on high-yield strains of sorghum that were generated several years ago by Dr. Xin. An unknown genetic mutation introduced by chemical mutagenesis - a method used for many decades by breeders and researchers to induce genetic variations in plants - resulted in an increase in the number of grains, i.e., seeds contained within fruits, that each plant produced.

Like many cereal crops, sorghum's grains are produced in clusters of flowers that develop from an elaborately branched structure at the top of the plant called a panicle. Each panicle can produce hundreds of flowers. There are two types of flowers, and usually only one of these, known as the sessile spikelet (SS), is fertile. The other flower type, called pedicellate spikelets (PS), do not make seeds. In the modified plants Dr. Xin produced, however, both sessile and pedicellate spikelets produced seeds, tripling each plant's grain number.

Ware and her team wanted to understand what caused this dramatic change. By completely sequencing the genomes of the modified plants, they found that the key mutations affected a gene that regulates hormone production. Plants carrying the mutation produce abnormally low levels of a development-regulating hormone called jasmonic acid, particularly during flower development.

Through subsequent experiments, the team learned that jasmonic acid prevents pedicellate spikelets from producing seeds. "So when the plant hormone is low, we get seeds set on every single one of the flowers. But when the plant hormone is high, we have a reduced number of fertile flowers, ending up in a reduced number of seeds," explains Dr. Yinping Jiao of the Ware lab, co-first author on the new paper.

Now that the team has uncovered the biological changes that triple sorghum's grain production, they hope to apply the same strategy to increase grain production in related plants that are vital in the global food supply, such as rice, corn, and wheat. The knowledge will help guide crop improvement through traditional breeding practices as well as approaches that take advantage of genome editing technologies, Ware says.
-end-
Funding: United Sorghum Checkoff program; U.S. Department of Agriculture Agricultural Research Service; National Research Foundation of Korea

Citation: Jiao J et al, "MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway," appears in Nature Communications on February xx, 2018.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program annually hosts more than 12,000 scientists. The Laboratory's education arm also includes an academic publishing house, a graduate school and the DNA Learning Center with programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Cold Spring Harbor Laboratory

Related Sorghum Articles:

Sorghum: Health food, sweetener and now, clothing dye
Sorghum has long been a staple food in many parts of the world, but in the US, it's best known as a sweetener and livestock feed.
Micro-organisms will help African farmers: Soil microbes to the rescue
Sorghum is the fifth most important cereal in the world.
Danforth Center expands major research program to benefit farmers in the developing world
Sorghum is a member of the grass family and is grown worldwide.
Dual-purpose biofuel crops could extend production, increase profits
Dual-purpose biofuel crops could extend production by two months, decreasing the cost of each gallon of fuel and increasing profits by as much as 30 percent.
Research to help develop next-generation food crops
Research led by The Australian National University is helping to develop food crops with bigger yields and greater ability to cope with drought compared with today's plants.
Farming adaptations needed to combat climate change to impact crop yields in 2050
As the globe continues to spin toward a future with higher temperatures, crop yields will likely decrease if farmers do not adapt to new management or technology practices.
Carnegie Mellon and Near Earth Autonomy robots and drones put on a show at Clemson
A rumbling robot and several high-flying drones recently made an on-site appearance at Clemson University to burrow through and buzz above 15 acres of experimental sorghum plots containing more than 2,800 replicated entries.
Genetically improving sorghum for production of biofuel
The bioenergy crop sorghum holds great promise as a raw material for making environmentally friendly fuels and chemicals that offer alternatives to petroleum-based products.
Weed stems ripe for biofuel
A weedy plant found on the roadside in northern Australia has stems ripe for biofuel production.
Taking malaria breath markers to the world
Australian scientists will be field testing their ground-breaking breath markers for malaria, thanks to a $1.4 million research grant from the Bill & Melinda Gates Foundation.

Related Sorghum Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".