Nav: Home

Scientists move closer to treatment for Huntington's disease

February 26, 2018

A new variant of the gene-editing CRISPR/Cas9 system is safer and more specific than versions previously used in early research towards a treatment for Huntington's disease, shows research published today in Frontiers in Neuroscience.

The idea of editing genes to cure disease is becoming closer to a reality every day. For genetic diseases such as Huntington's disease -- an incurable neurodegenerative disease caused by a well-recognized defective gene -- simply cutting out the disease-causing DNA sequence seems like it could be the ultimate cure. But before anyone goes anywhere near snipping up a patient's DNA, researchers are taking every step to make sure that they have the safest and most effective methods.

"In our study we further improve the CRISPR/Cas9 approach by using a nickase version of Cas9," says Dr. Marta Olejniczak, group leader of the study and an associate professor at the Institute of Bioorganic Chemistry in Poland. "Because Cas9 nickases are known to be safe and specific, our approach provides an attractive treatment tool for Huntington's disease."

Huntington's disease is caused by the abnormal repetition of a specific DNA sequence at the tail end of the huntingtin gene. This defective mutant gene causes production of a toxic protein that progressively accumulates and damages the patient's neurons. The disease usually begins in a patient's 30s or 40s and, in the decades after disease onset, patients gradually lose the ability to move, talk and even think.

There is currently no cure for Huntington's disease. But researchers have tried many methods to silence the defective gene. This includes interrupting production of the toxic protein through DNA- and RNA-based approaches. Most recently, researchers have also begun work with one of the most promising gene-editing tools to date -- the CRISPR/Cas9 system, which is far easier, faster and more specific than past tools. But it is still the early days of medical applications of CRISPR/Cas 9, which was only discovered in 2012.

To make sure that this technique is as safe and effective as possible, Olejniczak's group has been testing out a new variant of the Cas9 protein component in cellular models from a Huntington's patient. This version of Cas9 was recently designed to act as a nickase -- an enzyme that cuts just one DNA strand instead of two, which increases the precision with which Cas9 can edit specific sequences of DNA.

"We demonstrated that excision of the repeat tract with the use of a Cas9 nickase pair resulted in inactivation of the huntingtin gene and abrogation of toxic protein synthesis in cellular models of Huntington's disease," says Dr. Olejniczak. "Our strategy is safe and efficient, and no sequence-specific side effects were observed."

There is much more future work to be done and further improvements are still needed, but this research represents one small step closer to a possible treatment for this devastating genetic disease.
-end-


Frontiers

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
New DNA synthesis technique promises rapid, high-fidelity DNA printing
Today, DNA is synthesized as an organic chemist would, using toxic chemicals and error-prone steps that limit accuracy and thus length to about 200 base pairs.
The changing shape of DNA
The shape of DNA can be changed with a range of triggers including copper and oxygen - according to new research from the University of East Anglia.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.