Nav: Home

Majorana runners go long range: New topological phases of matter unveiled

February 26, 2018

Researchers from Universidad Complutense de Madrid, MIT and Harvard University have discovered a mechanism that enhances the presence of Majorana particles at the edges of a topological superconductor, thanks to the presence of long-range magnetic interactions. Moreover, they have shown that it is possible to find new topological phases of matter by merging distant Majoranas into a new particle. This great achievement could have future applications for quantum technologies.

In a recent paper published in Physical Review Letters, these researchers explain how they improve the propagation of Majorana particles at the edge of a topological superconductor by exploring the nature of long-range interactions, and transforming the Majoranas into more stable quasiparticles.

The study of topological phases of matter has become a very active field of research, that is revolutionizing our understanding of nature. It has given rise to new materials like topological insulators, Weyl semimetals, and topological superconductors.

Topological superconductors are materials that, besides conducting electric current without dissipating energy as heat, they host unconventional particles known as Majorana fermions. It is unknown whether these particles exist in high energy physics, but remarkably, Majorana fermions appear as low energy excitations (quasiparticles) in certain materials.

Useful to build quantum computers

These particles are very exotic in condensed matter. They behave as their own antiparticle and have been proposed as building blocks of future topological quantum computers. A quantum computer uses certain remarkable properties of quantum physics to solve tasks and processes, that would otherwise be unsurmountable by conventional computers.

Nonetheless, these properties (such as quantum entanglement between tiny particles) are very sensitive to environmental interactions (decoherence). This is the main reason why the construction of quantum computers turns out to be a great challenge that is currently being tackled by research labs and companies all over the world. The Majorana fermions that appear in topological superconductors are much more robust than other conventional particles, which would allow to build such novel computers.

The existence of Majorana fermions had been already proven in earlier works: chains of magnetic impurities placed on top of a superconductor substrate have shown that long-range magnetic interactions between electrons appear very naturally in these materials.

According to the authors of this publication, these interactions are very similar to the one between two magnets that feel attraction or repulsion to one another. In this case, it would be the magnetic moments of the electrons that interact with each other instead of the magnets.

However, it remained unknown what the effect of these magnetic interactions was over the properties of superconducting materials. This is precisely what this research work has solved.

Merging of Majorana particles

The researchers of this collaboration have found cases where the long-range effects of the magnetic interactions were so strong, that two distant Majorana fermions merged into a non-local topological quasiparticle.

This surprising effect could be used to store quantum information in a non-degenerate system (i.e. two-level systems with different energy), but with extra protection against external noise, caused by decoherence, or the loss of quantum effects.

These findings represent a great leap towards the understanding of the role of long-range magnetic interactions in the realm of topological superconductors. Moreover, these results will spark generation of novel topological phases of mater, widening their current applications in spintronics, quantum memories and computers, and other related fields.
-end-
Reference

Chiral Topological Superconductors Enhanced by Long-Range Interactions, O. Viyuela, L. Fu, M. A. Martin-Delgado, Phys. Rev. Lett. 120, 017001 (2018)

QUITEMAD+

Related Energy Articles:

Wave energy researchers dive deep to advance clean energy source
One of the biggest untapped clean energy sources on the planet -- wave energy -- could one day power millions of homes across the US.
A new energy source within the cells
Scientists at the Centre for Genomic Regulation in Barcelona, Spain, find evidence of a new energy source within cell nucleus.
MIT Energy Initiative welcomes Exelon as member for clean energy research
MIT Energy Initiative announces that national energy provider Exelon joins MITEI as a member to focus research support through MITEI's Low-Carbon Energy Centers.
Clean energy from water
Fuel cells generate electrical energy through a chemical reaction of hydrogen and oxygen.
Determinant factors for energy consumption and perception of energy conservation clarified
Change in lifestyle is a key component to realizing a low-carbon society.
Lactate for brain energy
Nerve cells cover their high energy demand with glucose and lactate.
Evidence shows low energy sweeteners help reduce energy intake and body weight
Use of low energy sweeteners (LES) in place of sugar, in children and adults, leads to reduced calorie intake and body weight - and possibly also when comparing LES beverages to water -- according to a review led by researchers at the University of Bristol published in the International Journal of Obesity today.
ASU professor honored for work on energy and social aspects of energy policy
Martin 'Mike' Pasqualetti, an Arizona State University professor and an expert on energy and social components of energy development, will be awarded 2015 Alexander and Ilse Melamid Memorial Medal by the American Geographical Society.
Stanford's Global Climate and Energy Project awards $9.3 million for energy research
GCEP has awarded scientists at Stanford and four other universities funding to develop a suite of promising energy technologies.
Energy efficiency upgrades ease strain of high energy bills in low-income families
Low-income families bear the brunt of high-energy costs and poor thermal comfort from poorly maintained apartment buildings.

Related Energy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".