Nav: Home

Global scientific review reveals effective alternatives to neonicotinoid and fipronil insecticides

February 26, 2018

Use of controversial neonicotinoid insecticides ("neonics") in agriculture is not as effective as once thought, and can be replaced by advantageous pest-management alternatives, according to a study1 published today in the Springer journal Environmental Science and Pollution Research.

This latest publication of the Task Force on Systemic Pesticides reviews 200 studies to assess mass use of systemic insecticides in agriculture, focusing on their effects on crop yields and the development of pest resistance to these compounds after two decades. While neonics were first brought into use in 1991, documented resistance to them dates as far back as 1996. The authors identify a diverse range of alternative pest-management strategies available for large-scale crop production, concluding that a new framework is needed for a truly sustainable agricultural model that relies mainly on natural ecosystem services instead of highly toxic chemicals.

"Over-reliance on systemic insecticides for pest control is inflicting serious damage to the environmental services that underpin agricultural productivity," said Task Force co-chair and scientist at France's National Scientific Research Centre Jean-Marc Bonmatin. "This new research is exciting because it's proven the existence and feasibility of a number of alternative, integrated pest management models -- which are far better for the environment without increasing costs or risks for farmers."

Neonicotinoids and the phenylpyrazole fipronil are the world's most sold systemic insecticides. They are routinely used in agriculture as seed treatments even where there is no relevant pest threat. After two decades of extensive neonics use, studies2 show these pesticides can have disastrous effects on biodiversity and ecosystems, including harm to pollinators.

"Insecticides are expected to achieve higher yields and net incomes, but this certainly is not always the case," Bonmatin said. "The overwhelming evidence of negative effects on pollinators and arthropods needs to be weighed against the pest control benefits these systemic insecticides are supposed to produce."

Today's report cites many alternative integrated pest-management approaches that can be implemented in combination: at the landscape level (e.g., ecological corridors), by using better farming methods (e.g., crop rotation, resistant crop varieties), by taking advantage of biocontrol (e.g., predators and parasitoids) and through other means (e.g., traps, naturally derived insecticides).

The study also details results of an innovative insurance system that protects farmers against undue financial risks without causing environmental harm. Through a "mutual fund" insurance model piloted in Italy, a collective of farmers manages a mutual fund stock, creating compensation through an interregional distribution of risks. Compensation is commensurate with the financial resources of the fund, which covers risks that private insurance companies currently do not, including climatic adversities such as flooding and damage by wild animals and pests.

"Crop insurance programs can be tailored to reduce the financial risk to farmers from potential pest infestations without the environmental costs of insecticide use," Bonmatin said. "And on a cost-recovery basis, insurance premiums are far cheaper than insecticides, so farmers' net incomes rise, too. It's a win-win approach for farmers and the environment."

The European Union is expected to vote soon on a proposal to expand its 2013 moratorium to cover most uses of neonics. France will phase-out all neonics next September. Canada is proposing to phase-out all agricultural uses of the neonic imidacloprid, with a final decision expected in December.

Separately, Canada has also proposed to cancel some uses of other neonics (clothianadin and thiamethoxam), but would continue to permit their main use as seed treatments.

"Regulators need to realize that if we want sustainable agricultural practices, we need a more restrictive regulatory framework and programs to support farmers making the switch," Bonmatin said. "Our findings on the availability of alternatives will be particularly relevant where new restrictions on neonics are being considered."
-end-
References:

1. Furlan, L. et al (2018) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides, Environmental Science and Pollution Research DOI: 10.1007/s11356-017-1052-5

2. Pisa, L. et al (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems, Environmental Science and Pollution Research DOI: 10.1007/s11356-017-0341-3

Further Information

About Environmental Science and Pollution Research

About the Task Force on Systemic Pesticides http://www.tfsp.info/

Study contacts

Faisal Moola, Task Force on Systemic Pesticides / University of Guelph | fmoola@uoguelph.ca | 647-281-5279

Springer

Related Pesticides Articles:

Nanozymes -- efficient antidote against pesticides
Members of the Faculty of Chemistry of the Lomonosov Moscow State University have developed novel nanosized agents -- nanozymes, which could be used as efficient protective and antidote modalities against the impact of neurotoxic organophosphorous compounds: pesticides and chemical warfare agents.
Study examines pesticides' impact on wood frogs
A new study looks at how neonicotinoid pesticides affect wood frogs, which use surface waters in agricultural environments to breed and reproduce.
USDA announces $1.8 million for research on next generation pesticides
The US Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) today announced $1.8 million in available funding to research new, environmentally friendly pesticides and innovative tools and strategies to replace an older treatment, methyl bromide.
Light therapy could save bees from deadly pesticides
Treating bees with light therapy can counteract the harmful effects of neonicotinoid pesticides and improve survival rates of poisoned bees, finds a new UCL study.
The effects of pesticides on soil organisms are complex
There are significant interactions between soil management factors, including pesticide application, with respect to effects on soil organisms.
Pesticides used to help bees may actually harm them
Honeybees from chlorothalanil-treated hives showed the greatest change in gut microbiome.
Research associates some pesticides with respiratory wheeze in farmers
New research from North Carolina State University connects several pesticides commonly used by farmers with both allergic and non-allergic wheeze, which can be a sensitive marker for early airway problems.
Electronic nose smells pesticides and nerve gas
Detecting pesticides and nerve gas in very low concentrations. An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven, Belgium, have made it possible.
Honeybees pick up 'astonishing' number of pesticides via non-crop plants
A Purdue University study shows that honeybees collect the vast majority of their pollen from plants other than crops, even in areas dominated by corn and soybeans, and that pollen is consistently contaminated with a host of agricultural and urban pesticides throughout the growing season.
Common pesticides kill amphibian parasites, study finds
A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians.

Related Pesticides Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".