Nav: Home

Preterm birth leaves its mark in the functional networks of the brain

February 26, 2018

Researchers at the University of Helsinki and the Helsinki University Hospital have proven that premature birth has a significant and, at the same time, a very selective effect on the functional networks of a child's brain.

Premature birth is globally the most important risk factor for life-time disorders and defects in neurocognitive functions. However, current methods have not shed much light on how premature birth affects the early activity of neurons in the frontal lobe, significant specifically to cognitive functions.

A study involving 46 infants exposed to very early prematurity and nearly 70 healthy and mature control infants was recently conducted at the University of Helsinki and the Helsinki University Hospital. Brain function in the infants was monitored and measured with the help of an EEG cap, developed earlier at the clinic, revealing new information on the subject.

"In this study, a new 'source analysis' method was used for the first time to measure functional networks in the infant brain: with the help of a computer model, the measured EEG signals were interpreted as activity in the infant cortex, which enabled the evaluation of the functional networking of neurons in a very versatile manner on the cortical level", says Sampsa Vanhatalo, a professor in clinical neurophysiology and the head of the study.

It was found that there are several overlapping functional neural networks in the cortex of a newborn. Another finding was that premature birth has a significant, but also a very selective effect on these networks. The clearest effect can be seen in the functional networks of the frontal lobe, especially significant to cognitive functions.

"We were able to demonstrate how the strength of synapses in the frontal lobe is linked with the neurological abilities of infants. This provides an extremely interesting opportunity to use the functional networking of the brain as an early indicator in, for example, clinical trials that compare the effects of different treatments on brain development. The selective changes found in the study also provide a potential explanation for attention deficit and other cognitive issues often found in children who are prematurely born."

Vanhatalo points out that functional MRI imaging does not show the functional coupling of an infant's neurons, even though the method is still widely used all over the world for studying this very phenomenon. "Therefore, our EEG findings are the first results that actually provide information on cortical functional networks in preterm infants."

The study results have been published in the scientific journal Cerebral Cortex.
-end-


University of Helsinki

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.