Nav: Home

Watch fat cells help heal a wound in a fly

February 26, 2018

Fat body cells in Drosophila play a surprising role in sealing wounds and preventing infection, researchers at the University of Bristol report February 26 in the journal Developmental Cell. The cells, which were previously thought to be immobile, propel themselves forward toward wounds with a wormlike wave motion, rather than adhering to and pushing off of other structures like most motile cells do.

After arriving at the site of a wound, fat body cells perform several useful functions. "They work a lot harder and are more of a team player than was previously thought," says Paul Martin, who, alongside Will Wood, was one of the senior authors of the paper.

The fat cells crowd into the wound and waft debris to the edges of it, where the debris can be consumed by the immune cells. The fat cells are large enough that anywhere from one to four cells can plug the wound, playing a role similar to a clot or scab in vertebrates. The cells physically keep bacteria out of the wound while it heals, while helping increase the production of antimicrobial peptides to quell any infections. The fat cells stay at the wound site until it is healed. "Then they detach and just swim off, as though their job is done," Martin says.

But the way the cells get to the wound -- and the fact that they travel there at all -- is also surprising. The researchers were making movies of fly immune cells, called hemocytes, when they noticed giant shadows moving across the frame. "I wondered whether it might be these large fat body cells," says first author Anna Franz. "But of course, they shouldn't be moving, because fat cells aren't motile."

Except that they were. And they were moving on their own. "We had to be sure that they weren't just drifting and then sort of sticking at the wound site," says Martin. "And we had to rule out that they weren't just being sort of sucked to the wound by fluid coming out of the hole, much like if you tossed a flannel in a bath and then took the plug out." But genetically modified versions of the fat body cells with inactivated contractile proteins no longer moved to wounds, suggesting that the cells were actively migrating, rather than simply being carried around by hemolymph, the fluid inside the fly.

Whereas most cells use little spikes of actin called filopodia and lamellipodia to push and pull themselves off of other objects, the fat body cells appear to use peristaltic constriction to "swim" through the hemolymph. They don't use frictional movement at all. Instead, actin and myosin, the proteins found in our muscle fibers, constrict at the center of the cell. The constriction then moves like a wave toward the rear of the cell to propel it forward. "The reason we use the word peristaltic is because a wave of muscle constriction that moves down the esophagus is what sends bits of food down into your gut. That's called peristalsis, and that's what this looks like as it moves," says Martin.

Franz doesn't believe that the way these cells move is unique to fat body cells. But, she says, "people have mainly focused on cells that adhere to a substrate when migrating, because that's easier to observe in tissue culture." These studies make it clear that cells in vivo can move without adhering, and she hopes that they will continue to be investigated: "This is now an example where you can study it easily in an animal."

How the cells know to travel to the wound is still unclear, although the researchers were able to confirm that they aren't summoned by the immune cells. Even in the absence of immune cells, the fat body cells still go to the wound. But once they get there, they do clearly collaborate with the immune cells. "So fat cells and immune cells probably are important as a team, both in a healthy situation, like healing a wound, and in a pathology situation, like cancer," Martin says.

This is something that he hopes to study further in vertebrate models. There is some evidence that fat cells can aid healing in vertebrates, but so far, no one has shown vertebrate fat cells actually migrating. "But perhaps they do," he says. "Now, because of this research, it would be worth looking at them. It's not crazy to think that they might travel to a wound and do important things when they get there."
-end-
This work was supported by an MRC Programme Grant and Wellcome Trust Investigator and Fellowship Awards.

Developmental Cell, Franz et al.: "Fat body cells are motile and actively migrate to wounds to drive repair and prevent infection."

Developmental Cell (@Dev_Cell), published by Cell Press, is a bimonthly, cross-disciplinary journal that brings together the fields of cell biology and developmental biology. Articles provide new biological insight of cell proliferation, intracellular targeting, cell polarity, membrane traffic, cell migration, stem cell biology, chromatin regulation and function, differentiation, morphogenesis and biomechanics, and regeneration and cellular homeostasis. Visit: http://www.cell.com/developmental-cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Immune Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.