Nav: Home

Immune system activation in pregnant women can shape brain development in their babies

February 26, 2018

A landmark study published in the Journal of Neuroscience on February 26 reveals that activation of a pregnant mother's immune system can affect her baby's brain development. A team of researchers led by Bradley Peterson, MD, director of the Institute for the Developing Mind in the Department of Pediatrics at Children's Hospital Los Angeles, found that short- and long-term brain functioning can be influenced by immune system activity during the third trimester of gestation.

Many triggers can generate immune responses, such as infections, stress, illness, or allergies. When the body's immune system detects one of these triggers, proteins are released as part of an inflammatory response. Animal studies have shown that some of the proteins released during this response can impact offspring, but little is known about the effect on humans. The current study was designed to determine whether this immune response can impact the developing nervous system of infants.

The study recruited young women in their second trimester and involved a blood draw and fetal heart monitoring during the third trimester, anatomical brain scans of the newborns, and cognitive behavioral assessment of the babies at 14 months of age. The ages of the pregnant young women (14 to 19 years) put them at high risk for psychosocial stress and resulting inflammation.

This unique, prospective study design allowed Peterson and his colleagues to follow babies from a critical point in fetal brain development in utero, through birth, and all the way into toddlerhood. The goal was to examine the possible link between markers of inflammation in the mother's blood with changes in the nervous system of their babies.

Blood drawn from mothers during their third trimester was tested for levels of IL-6 and CRP - two proteins that are found at higher levels when the immune system is activated. Peterson's team also monitored fetal heart rate as an indicator for nervous system development. The team found that CRP did correlate with variability of the fetal heart rate, which is influenced heavily by the nervous system, indicating that maternal inflammation was already beginning to shape brain development.

When the babies were born, they were given MRI scans in their first few weeks of life, providing researchers a unique view of early neural development and the influence of prenatal factors. Brain imaging revealed a striking finding - significant changes in the communication between specific brain regions correlated with elevated maternal IL-6 and CRP levels. These brain regions are known collectively as the salience network, whose job is to filter stimuli coming into the brain and determine which deserve attention.

"Our brain is constantly receiving information from our bodies and the external world," explains Peterson, who is also the director of the Division of Child and Adolescent Psychiatry and Professor of Pediatrics in the Keck School of Medicine at USC. "The salience network sifts through that information and decides what is important and warrants action." Disturbances in the functioning of this network, as well as various kind of infection and other triggers of a pregnant woman's immune response, have been linked to development of psychiatric illnesses, such as schizophrenia and autism spectrum disorders. Peterson's study is the first to link maternal inflammation directly to disruptions in the salience network in infants.

The correlations of elevated maternal inflammatory markers were not limited to the newborn period, but continued to persist into toddlerhood. When the babies turned 14 months of age, researchers assessed them for motor skills, language development, and behavior. Following the established Bayley Scales of Infant and Toddler Development-Third Edition, Peterson found significant changes in the scores of toddlers born to mothers with elevated levels of both IL-6 and CRP.

While researchers still have much work to do in order to completely understand just how these immune factors contribute to altered brain development, this study represents an important step forward. "This finding fills in a missing piece," says Peterson. "Although studies in animals have suggested it, this study indicates that markers of inflammation in a mom's blood can be associated with short- and long-term changes in their child's brain, which will now allow us to identify ways to prevent those effects and ensure children develop in the healthiest possible way beginning in the womb and continuing through later childhood and beyond."
-end-
Additional contributors to the study include first author Marisa N. Spann, PhD, MPH and Catherine Monk, PhD, Columbia University and Dustin Scheinost, PhD, Yale University School of Medicine. The study was supported by the National Institute of Mental Health (MH093677-05), the National Center for Advancing Translational Sciences (KL2 TR001874 and 000081), and the Marilyn and James Simons (MJS) Foundation (Whitaker Scholar Developmental Neuropsychiatry program).

Children's Hospital Los Angeles

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".