Nav: Home

Stormy weather

February 26, 2018

Flooding isn't new to the Santa Barbara coastline. However, the inundation doesn't always come from the mountains as it did last month in Montecito.

Back in 1861-2, a series of large storms washed beach sand more than a quarter mile inland into what today is the Carpinteria Salt Marsh. Although historical accounts document the inland flooding, little has been known about how those storms impacted a now heavily developed California coast.

In a new paper in the journal Marine Geology, UC Santa Barbara geologists provide the first physical evidence of coastal erosion and inundation produced by these storms. In the upper meter of marsh sediments, they found a unique deposit -- in fact the only such deposit to have happened over the past 300 or so years.

"The deposit is comparable in scale to those caused by moderate hurricanes or even small tsunamis," explained co-author Alex Simms, an associate professor in UCSB's Department of Earth Science. "The deposit suggests that the 1861-62 storm season was erosive enough to remove coastal barriers, allowing extensive coastal flooding in areas currently developed today."

The team conducted its work at the Carpinteria Salt Marsh Reserve, part of UCSB's Natural Reserve System.

Lead author Laura Reynolds, a graduate student in Simms' lab, and co-authors mapped the sand deposit within the Carpinteria marsh using 40 sediment cores, tubes of sediment up to 4 meters long. They confirmed the deposit's age using the presence of European crop pollen as well as tiny grains known as spheroidal carbonaceous particles, which are created by the burning of fossil fuels.

The researchers compared the candidate storm deposit to sand from modern stream, beach and dune environments. They determined that the sediments from the candidate storm deposit were most similar to modern beach sand in terms of mineral content and the size of the sand grains. This suggests the sand was brought into the marsh from the beach, not from streams.

The storms of 1861-62 are hypothesized to have resulted from atmospheric rivers, concentrated zones of water vapor high up in the atmosphere that produce intense precipitation and river flooding along coastlines on which they occur. Although ocean flooding from tsunamis and other large storms has happened throughout the past 200 years in Southern California, no other event is known to have washed beach sand into the Carpinteria Salt Marsh.

This suggests that the storm season was unusually destructive to the sandy barrier that separates the marsh from the ocean. Therefore, efforts to prepare for a recurrence of storms like those that occurred during that time need to address potential coastal impacts.

"This is particularly troubling considering coastal systems that once took the brunt of storm events -- dunes, beaches and estuaries -- are today some of the most degraded and developed environments in coastal regions around the world," Reynolds said. "Consequently, mitigation efforts for prolonged stormy periods should consider the effects of coastal erosion and inundation in addition to the effects of excess precipitation."
-end-


University of California - Santa Barbara

Related Beach Articles:

The beach time capsule
And to think it was all right there in her garage.
Visiting virtual beach improves patient experiences during dental procedures
Imagine walking along a beach on a lovely day. As you turn to continue along the coast path feeling calm and relaxed you suddenly hear your dentist say 'Fine, all done, you can take the headset off now'.
Study highlights formation of beachrock in resisting climate-induced sea level rises
Microorganisms play a crucial role in forming beachrock, a type of rock that forms on the beach and protects low-lying reef islands from erosion, a new study involving University of Queensland research has revealed.
Three little letters that could make you a big hero at the beach this summer: CPR
New study shows that bystander CPR is associated with favorable neurological survival for drowning victims in cardiac arrest
Bombay beach event demonstrates difficulties in earthquake swarm forecasting
In a presentation at the 2017 Seismological Society of America's (SSA) Annual Meeting, US Geological Survey seismologist Andreas Llenos will discuss lessons learned from the 2016 Bombay Beach swarm, in particular the challenges in modeling swarms and communicating their risk to the public.
More Beach News and Beach Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...