Nav: Home

Flu forecasting system tracks geographic spread of disease

February 26, 2018

Scientists at Columbia University's Mailman School of Public Health developed a system to accurately predict the geographic spread of seasonal influenza in the United States, as reported in a paper published in the journal PNAS.

For the public, the flu forecast may promote greater vaccination, the exercise of care around people sneezing and coughing, and a better awareness of personal health. For health officials, it could inform decisions on how to stockpile and distribute vaccines and antiviral drugs, and in the case of a virulent outbreak, whether other measures, like closing schools, are necessary.

In a retrospective test for the 2008-2009 through 2012-2013 influenza seasons in 35 states, the Mailman School researchers found their forecasting system accurately predicted local onset of flu six weeks ahead of time. Compared to the previous version of the system, the new version improved forecasting accuracy with regard to onset, by 35 percent; peak timing, by 31 percent; and intensity, by 13 percent. Similar improvements were seen at the county level in a test using data from Virginia.

The researchers expect to use the system in their online forecasts for the 2018-19 flu season. Currently, it is being employed as one of the Mailman School entries in the 2017-18 Center for Disease Control and Prevention flu forecast challenge, which the research team previously won outright in 2014 and tied for first in 2015 and 2017.

"The system could also be adapted for use with other respiratory viruses, and with some modification, for infectious diseases more broadly," says lead author Sen Pei, a postdoctoral scientist in Environmental Health Sciences at Columbia's Mailman School of Public Health.

The forecasting system employs techniques used in modern weather prediction to generate local forecasts. It starts with data from the Department of Defense on local incidence of influenza-like illness combined with laboratory-verified cases of influenza and adds a spatial element by incorporating information from Census data on commuting patterns. The system accounts for differences in population location between day and night and irregular travel such as for business trips and vacations.

"Influenza, like many infectious diseases, is spread from person-to-person and as people move from place to place," says Jeffrey Shaman, the study's senior author and associate professor of Environmental Health Sciences at the Mailman School. "By assimilating information on commuting patterns, we've taken a big step forward and improved our ability to accurately forecast where the flu might crop up next."
-end-
The study, titled "Forecasting the spatial transmission of influenza in the United States" was authored by Sen Pei, Sasikiran Kandula, Wan Yan, and Jeffrey Shaman, all in the Department of Environmental Health Sciences at Columbia's Mailman School of Public Health with support from the National Institutes of Health (grants GM110748, GM100467, ES009089) and the Defense Threat Reduction Agency (contract HDTRA1-14-C-0018). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

About the Columbia Flu Forecasting System

Each year since 2013, the Mailman School has published weekly forecasts of the flu season. Specific to more than 80 cities across the country and all 50 states, the online projections predict whether cases are expected to rise or fall and by how much. The researchers have also developed modified versions of the system that could predict the flu in a subtropical environment and on the neighborhood level. They have also forecast the spread of Ebola and West Nile Virus.

Columbia University's Mailman School of Public Health

Related Influenza Articles:

Birds become immune to influenza
An influenza infection in birds gives a good protection against other subtypes of the virus, like a natural vaccination, according to a new study.
Researchers shed new light on influenza detection
Notre Dame Researchers have discovered a way to make influenza visible to the naked eye, by engineering dye molecules to target a specific enzyme of the virus.
Maternal vaccination again influenza associated with protection for infants
How long does the protection from a mother's immunization against influenza during pregnancy last for infants after they are born?
Influenza in the tropics shows variable seasonality
Whilst countries in the tropics and subtropics exhibit diverse patterns of seasonal flu activity, they can be grouped into eight geographical zones to optimise vaccine formulation and delivery timing, according to a study published April 27, 2016 in the open-access journal PLOS ONE.
Influenza viruses can hide from the immune system
Influenza is able to mask itself, so that the virus is not initially detected by our immune system.
Using 'big data' to combat influenza
Team of scientists from the Icahn School of Medicine at Mount Sinai and Sanford Burnham Prebys Medical Discovery Institute among those who combined large genomic and proteomic datasets to identify novel host targets to treat flu.
Rapidly assessing the next influenza pandemic
Influenza pandemics are potentially the most serious natural catastrophes that affect the human population.
Early detection of highly pathogenic influenza viruses
Lack of appropriate drugs and vaccines during the influenza A virus pandemic in 2009, the recent Ebola epidemic in West Africa, as well as the ongoing Middle Eastern Respiratory Syndrome-Coronavirus outbreak demonstrates that the world is only insufficiently prepared for global attacks of emerging infectious diseases and that the handling of such threats remains a great challenge.
Study maps travel of H7 influenza genes
In a new bioinformatics analysis of the H7N9 influenza virus that has recently infected humans in China, researchers trace the separate phylogenetic histories of the virus's genes, giving a frightening new picture of viruses where the genes are traveling independently in the environment, across large geographic distances and between species, to form 'a new constellation of genes -- a new disease, based not only on H7, but other strains of influenza.'
Influenza A potentiates pneumococcal co-infection: New details emerge
Influenza infection can enhance the ability of the bacterium Streptococcus pneumoniae to cause ear and throat infections, according to research published ahead of print in the journal Infection and Immunity.

Related Influenza Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".