Nav: Home

Reforesting US topsoils store massive amounts of carbon, with potential for much more

February 26, 2018

ANN ARBOR -- Forests across the United States -- and especially forest soils -- store massive amounts of carbon, offsetting about 10 percent of the country's annual greenhouse gas emissions and helping to mitigate climate change.

But for more than 20 years, experts have warned that the strength of this carbon "sink" is declining and will level off around mid-century. One way to compensate for the declining sink strength of U.S. forests is to add more trees -- by actively replanting after disturbances like wildfires or by allowing forests to retake marginal croplands, for example.

A study scheduled for online publication the week of Feb. 26 in Proceedings of the National Academy of Sciences provides the first empirically based, published estimate of the total amount of carbon currently accumulating in the topsoil of U.S. forests undergoing these two types of reforestation.

The University of Michigan-led research team also looked at the potential to expand carbon sequestration in reforesting areas.

"Where reforestation is happening -- either through planting of trees or through encroachmen t-- these lands are actively adding carbon to a large pool that will continue to grow for many decades," said U-M ecologist and biogeochemist Luke Nave, the study's lead author.

"The topsoils of reforesting lands provide a significant long-range solution to the problem of the declining carbon-sink strength of U.S. forests, and they help to mitigate climate change. Even modest increases in the amount of land being reforested would have a multiplicative impact on nationwide carbon sequestration."

The researchers found that reforesting topsoils across the country are currently adding 13 million to 21 million metric tons (13-21 teragrams) of carbon each year, an amount equivalent to about 10 percent of the total U.S. forest-sector carbon sink and offsetting about 1 percent of all U.S. greenhouse gas emissions.

Over the next century, reforesting U.S. topsoils will sequester a cumulative 1.3 to 2.1 billion metric tons (1.3-2.1 petagrams) of carbon, accounting for nearly half of the soil-carbon gains occurring on U.S. forestland, said Nave, an assistant research scientist at the U-M Biological Station and in the Department of Ecology and Evolutionary Biology.

And the amount of stored carbon could increase dramatically if the nation's reforesting acreage, currently at nearly 200,000 square miles, grows.

As part of the study, the researchers looked at U.S. forestlands that have experienced major disturbances, such as intense wildfires or severe insect outbreaks, using National Forest Inventory data from the last several decades. They found that only about 7 percent of the forestlands available for replanting have been replanted.

When they looked at marginal croplands undergoing reforestation, they found that carbon-storage gains to date are only about 10 percent of their potential. That finding highlights "the substantial C-sink capacity of this land-use transition if these lands are allowed to continue returning towards a natural forest condition," the authors wrote.

For their study, the researchers combined satellite imagery with some 15,000 on-the-ground measurements of topsoil carbon from two national-level databases. One of the databases, from the International Soil Carbon Network, includes soil-carbon measurements at the U-M Biological Station near Pellston.
-end-
Co-authors of the PNAS paper are Grant Domke, Brian Walters, Charles Perry and Christopher Swanston of the U.S. Department of Agriculture-Forest Service; Kathryn Hofmeister of Cornell University; and Umakant Mishra of Argonne National Laboratory.

Nave and Swanston, who collaborated through the Northern Institute of Applied Climate Science, completed the work to help Forest Service researchers and land managers document the carbon benefits of reforestation.

The work was supported by funding from the U.S. Department of Agriculture-Forest Service and the National Science Foundation. The study is titled "Reforestation can sequester two petagrams of carbon in U.S. topsoils in a century." Once the article publishes, it will be available at http://www.pnas.org/cgi/doi/10.1073/pnas.1719685115.

http://myumi.ch/a0RyZ

University of Michigan

Related Greenhouse Gas Emissions Articles:

Evaluating greenhouse gas emissions in an irrigated cropping system
New, enhanced-efficiency fertilizer can reduce N2O emissions from irrigated cropping systems.
Models, observations not so far apart on planet's response to greenhouse gas emissions
Recent observations suggest less long-term warming, or climate sensitivity, than the predicted by climate models.
The Lancet Planetary Health: Food, climate, greenhouse gas emissions and health
Increasing temperatures, water scarcity, availability of agricultural land, biodiversity loss and climate change threaten to reverse health gains seen over the last century.
Gas hydrate breakdown unlikely to cause massive greenhouse gas release
A recent interpretive review of scientific literature performed by the US Geological Survey and the University of Rochester sheds light on the interactions of gas hydrates and climate.
New Marcellus development boom will triple greenhouse gas emissions from PA's natural gas
Natural gas production on Pennsylvania's vast black shale deposit known as the Marcellus Shale will nearly double by 2030 to meet growing demand, tripling Pennsylvania's greenhouse gas emissions from the natural gas sector relative to 2012 levels, according to a report published today by Delaware Riverkeeper Network.
Model predicts elimination of GMO crops would cause hike in greenhouse gas emissions
A global ban on genetically modified crops would raise food prices and add the equivalent of nearly a billion tons of carbon dioxide to the atmosphere, a study by researchers from Purdue University shows.
Drying Arctic soils could accelerate greenhouse gas emissions
A new study published in Nature Climate Change indicates soil moisture levels will determine how much carbon is released to the atmosphere as rising temperatures thaw Arctic lands.
Economic development does mean greater carbon footprint and greenhouse gas emissions
Must greater prosperity necessarily lead to a greater carbon footprint and increased greenhouse gas emissions?
'Watchdog' for greenhouse gas emissions
Mistakes can happen when estimating emissions of greenhouse gases such as carbon dioxide and methane.
Soil frost affects greenhouse gas emissions in the Arctic
Soil frost is a nearly universal process in the Arctic.

Related Greenhouse Gas Emissions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".