Nav: Home

Life under extreme drought conditions

February 26, 2018

The core region of the Atacama Desert in South America is one of the most arid places on earth. Sometimes it is raining only once in a decade or even less, the annual precipitation is far less than 20 mm. The dry conditions resulted in high salt concentrations in the soil and low organic matter content. However, scientists have found microorganisms there. But it has remained unclear whether these environments support active microbial growth or whether the observed cells were introduced by wind transport and subsequently degraded. Detailed analyses by an international research team show: Even in the most arid zones of the Atacama a microbial community exists which becomes metabolically active following episodic increase in moisture after rainfalls. The new findings, published in the journal PNAS, are important for evolution of life and landscapes on Earth. Moreover, the results have implications for the prospect of life on other planets - certainly for Mars.

The scientists took soil samples at six different locations in the Atacama Desert between 2015 and 2017. "We have chosen sample locations along a profile of decreasing moisture from the coast up to extreme arid conditions in the core region of the Atacama", explains first author Dirk Schulze-Makuch from the TU Berlin. "This gradient should be reflected in the life-friendly conditions - we call it habitability - as well as in the number and diversity of the microorganisms."

To get the whole picture the scientists used a broad range of complementary methods carried out at several geoscientific institutions in Berlin and Potsdam together with international partners. Amongst others the team conducted physico-chemical characterizations of the soil habitability and molecular biological studies. The latter were done mainly at GFZ German Research Centre for Geosciences in Potsdam where intracellular and extracellular DNA was analysed. "With this method we can find out which microorganisms really exist at the different locations in the Atacama probably doing metabolism and which ones are only represented by their naked DNA in the sediment as a signal from the past," says Dirk Wagner, Head of GFZ-Section for Geomicrobiology and one of the leading authors of the article. "Further investigations like tests on enzymes have shown that the suspected organisms in most cases are in fact metabolically active."

To scientists it is not only important to know where microbial life exists, it is also relevant to know about changes over time. Here they were lucky: First sampling in April 2015 occurred shortly after an unexpected rain event. The moisture had positive effects on life and activity in the desert. This is documented in samples taken and analysed in the following years in February 2016 and January 2017.

"We can clearly show that some time after a precipitation event, the abundance and biological activity of microorganisms decreases", says Wagner. But the organisms, which are predominantly bacteria, do not completely die off. According to the authors, single-celled organisms are found mainly in the deeper layers of the Atacama Desert where they have formed active communities for millions of years and have evolved to cope with the harsh conditions.

The findings from the South American desert are very useful for the question of life on other planets, especially in relation to Mars. Martian climate was initially humid, rivers and lakes had existed before the desertification began. No rain can fall from the thin Martian atmosphere today but liquid water can be present near the surface due to nightly snowfall. Additionally, there is fog and on some slopes also salty brines, which sporadically flow down and thus provide fluids. However, the exposure to hard radiation at the surface is much greater than on Earth. Based on the results of the study, the authors come to the conclusion: If life ever evolved on Mars in the past, under better conditions, it could have endured the transition to hyper-arid conditions and perhaps even be found in subsurface niches today.
-end-
Study: A Transitory Microbial Habitat in the Hyperarid Atacama Desert, Dirk Schulze-Makuch, Dirk Wagner, Samuel Kounaves et al., PNAS, DOI: 10.1073/pnas.1714341115

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Mars Articles:

How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
Does Mars have rings? Not right now, but maybe one day
Purdue researchers developed a model that suggests that debris that was pushed into space from an asteroid or other body slamming into Mars around 4.3 billion years ago and alternates between becoming a planetary ring and clumping up to form a moon.
Digging deeper into Mars
Scientists continue to unravel the mystery of life on Mars by investigating evidence of water in the planet's soil.
A bewildering form of dune on Mars
Researchers have discovered a type of dune on Mars intermediate in size between tiny ripples and wavier dunes, and unlike anything seen on Earth.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
Shifting sands on Mars
University of Iowa researchers have a $501,000 NASA grant to travel to Iceland to better understand sand dunes found all over the planet Mars.
Potatoes on Mars
A team of world-class CIP and NASA scientists will grow potatoes under Martian conditions in a bid to save millions of lives.
You too can learn to farm on Mars!
Scientists at Washington State University and the University of Idaho are helping students figure out how to farm on Mars, much like astronaut Mark Watney, played by Matt Damon, attempts in the critically acclaimed movie 'The Martian.'
Similarities between aurorae on Mars and Earth
An international team of researchers has for the first time predicted the occurrence of aurorae visible to the naked eye on a planet other than Earth.
Mars might have liquid water
Researchers have long known that there is water in the form of ice on Mars.

Related Mars Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".