Nav: Home

Researchers discover receptor that protects against allergies, asthma

February 26, 2018

A special receptor on cells that line the sinuses, throat and lungs evolved to protect mammals from developing a range of allergies and asthma, according to a study from researchers at Johns Hopkins Bloomberg School of Public Health.

The scientists found that the receptor, dectin-1, recognizes a protein found in house dust mites, cockroaches, shellfish and other invertebrates, and responds by suppressing immune reactions to these common triggers of allergy and asthma. The scientists also found evidence that this protective mechanism is dramatically impaired in people who have asthma or chronic sinusitis due to dust-mite sensitivity.

"Everyone is exposed to these substances, yet most don't have allergic responses to them, and this mechanism we've discovered appears to explain why," says study senior author Marsha Wills-Karp, PhD, Anna M. Baetjer Professor in Environmental Health at the Bloomberg School and chair of the Department of Environmental Health and Engineering.

The finding, which was published online February 23 in Science Immunology, suggests there may be new ways to treat or prevent allergies and asthma, which afflict tens of millions of people in the U.S. alone. The discovery also hints that while dectin-1 protects against dust-mite and other invertebrate-related allergic responses, there may be additional, undiscovered receptors that suppress allergic responses to pollens and other airborne and dietary allergens.

Dectin-1 previously has been studied as a receptor that recognizes structures on fungi and other microbes and triggers immune responses to them. There have even been suggestions that dectin-1 helps trigger allergic responses to dust mites. To investigate, Wills-Karp and colleagues, including postdoctoral researcher Naina Gour, PhD, and assistant scientist Stephane Lajoie, PhD, who were first authors of the study, studied mice that were genetically engineered to lack dectin-1.

The researchers found to their surprise that the airways of these dectin-1-deficient mice were more prone to inflammation after exposure to dust mites compared to otherwise identical mice whose airway cells expressed dectin-1 normally. Blocking dectin-1 with antibodies had the same allergy-promoting effect. Thus, dectin-1 protects against dust-mite allergies rather than promoting them.

The scientists determined that dectin-1, in addition to its fungus- and other pathogen-detecting duties, directly recognizes a protein called tropomyosin that is found in house dust mites and other invertebrates. Tropomyosin has previously been implicated as a possible trigger for asthma and shrimp allergies.

The experiments indicated that when dectin-1 recognizes tropomyosin in house dust mites, shrimp or other common allergy-triggering species it suppresses airway cells' production of an immune molecule, IL-33, which otherwise would promote an allergic response by immune cells.

Underscoring the relevance to humans, the researchers studied nasal and bronchial cells from people who suffer from asthma or chronic rhinosinusitis (nasal congestion/sniffles) due to dust-mite sensitivity, and found that on average these cells had a markedly lower expression of the dectin-1 gene. The team also examined data from a prior genetic study of children with asthma and found that a variant of the dectin-1 gene--which reduces production of the receptor--is strongly linked to increased asthma risk.

"Our findings suggest that people who have sufficient dectin-1 in the cells that line their airways won't experience an allergic response when exposed to airborne dust mites or related allergens--but people with a defect in dectin-1 expression will lack this protection," Wills-Karp says.

The findings point to the possibility of boosting dectin-1 levels, or otherwise restoring its protective effect, as a new therapeutic strategy against asthma and allergies that are related to dust mites, shrimp or other invertebrate triggers.

The study showed that dectin-1 does not recognize pollens, another major source of allergies. However, Wills-Karp expects that other receptors on airway cells recognize these ubiquitous plant-derived allergens and she hopes to find them in future research.
-end-
"Dysregulated Invertebrate Tropomyosin: Dectin-1 Interaction Confers Susceptibility to Allergic Diseases," was written by Naina Gour, Stephane Lajoie, Ursula Smole, Marquitta White, Donglei Hu, Pagé Goddard, Scott Huntsman, Celeste Eng, Angel Mak, Sam Oh, Jung-Hyun Kim, Annu Sharma, Sophie Plante, Ikhlass Haj Salem, Yvonne Resch, Xiao Xiao, Nu Yao, Anju Singh, Susanne Vrtala, Jamila Chakir, Esteban G. Burchard, Andrew P. Lane, and Marsha Wills-Karp.

Lajoie, in addition to being co-first author, was also co-corresponding author.

Support for the research was provided by the National Institute of Allergy and Infectious Diseases (U19AI070235, R01 AI083315), the National Institutes of Health (R56AI118791, R01AI127644, R01AI072502, R01 HL117004, R21ES24844, R01 ES015794, R01 HL088133, R01 HL078885, R01 HL104608, R01 MD010443, and R01 HL135156), the National Institute of Environmental Health Sciences (5T32ES007141), the Sandler Family Foundation, and the American Asthma Foundation.

Johns Hopkins University Bloomberg School of Public Health

Related Asthma Articles:

Insomnia prevalent in patients with asthma
A team of researchers from the University of Pittsburgh has found that insomnia is highly prevalent in adults with asthma and is also associated with worse asthma control, depression and anxiety symptoms and other quality of life and health issues.
Test used to diagnose asthma may not be accurate
A new study urges caution in the use of the mannitol challenge test for asthma in non-clinical settings.
Turning off asthma attacks
Working with human immune cells in the laboratory, Johns Hopkins researchers report they have identified a critical cellular 'off' switch for the inflammatory immune response that contributes to lung-constricting asthma attacks.
Access to asthma meds, plus flu vaccines, keep kids with asthma healthy
Kids need flu shots to prevent asthma flares, and medications available in school to keep 86 percent in class, according to two studies being presented at the American College of Allergy, Asthma and Immunology Annual Scientific Meeting.
Discovery could lead to better asthma treatment
Scientists have made a discovery that could lead to improved treatment for asthma sufferers.
Do asthma and COPD truly exist?
Defining a patient's symptoms using the historical diagnostic labels of asthma and chronic obstructive pulmonary disease (COPD) is an outdated approach to understanding an individual's condition, according to experts writing in the European Respiratory Journal today.
Asthma in many adolescents is not an allergic disease
New research indicates that asthma in many adolescents is not likely to involve inflammation of the airways and therefore should not be considered an allergic disease.
First classification of severe asthma
Severe asthma can have a devastating effect on sufferers, affecting their ability to work or go to school and to lead normal lives.
Exploring 'clinical conundrum' of asthma-COPD overlap in nonsmokers with chronic asthma
Researchers may be closer to finding the mechanism responsible for loss of lung elastic recoil and airflow limitation in nonsmokers with chronic asthma.
Asthma app helps control asthma: Alerts allergists when sufferers need assistance
New study in Annals of Allergy, Asthma and Immunology shows how an app directly connecting an allergist and an asthma sufferer can provide necessary intervention when asthma isn't under control.

Related Asthma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".