Nav: Home

Hidden 'rock moisture' possible key to forest response to drought

February 26, 2018

A little-studied, underground layer of rock may provide a vital reservoir for trees, especially in times of drought, report scientists funded by the National Science Foundation (NSF) and affiliated with The University of Texas (UT) at Austin and the University of California, Berkeley.

The study, published today in the journal Proceedings of the National Academy of Sciences (PNAS), looked at the water stored inside the layer of weathered bedrock that lies under soils in mountain forest ecosystems.

This transitional zone beneath soils and above groundwater is often overlooked when it comes to studying hydrologic processes, but researchers found that the water contained in the fractures and pores of the rock could play an important role in the water cycle at local and global levels.

"There are significant hydrologic dynamics in weathered bedrock environments, but traditionally they are not investigated because they are hard to access," said lead PNAS author Daniella Rempe, a geoscientist at UT Austin. "Our study was designed to investigate this region."

Researchers found that water in bedrock can sustain trees through droughts even after the soil has become parched.

At a field site in Northern California's Mendocino County, scientists found that up to 27 percent of annual rainfall was stored as "rock moisture," the water clinging to cracks and pores in the bedrock.

The impact of rock moisture varies, the researchers said, depending on region and topography. But it likely explains why trees in the study area showed little effect from the severe 2010-2015 drought, which killed more than 100 million trees throughout California.

"How trees can survive extended periods of severe drought has been a mystery," said Richard Yuretich, director of NSF's Critical Zone Observatory (CZO) program. The research was conducted at the NSF Eel River Critical Zone Observatory, one of nine NSF CZO research sites across the country.

"This study reveals a significant reservoir of trapped water that had gone unnoticed in the past," says Yuretich. "Research of this kind can help greatly in managing natural resources during times of environmental stress."

To conduct the study, scientists monitored rock moisture from 2013 to 2016 at nine wells drilled into weathered bedrock along a steep, forested hillside. They used a neutron probe, a precision tool that measures the amount of water in a sample area by detecting hydrogen.

They found that the weathered rock layer built up a supply of 4 to 21 inches of rock moisture during the winter wet season, depending on the well.

The maximum amount of rock moisture in each well stayed about the same throughout the study period, which included a significant drought year. The finding indicates that the total rainfall amount does not influence the rock moisture levels.

"It doesn't matter how much it rains in the winter; rock moisture builds up to the same maximum value," Rempe said. "That leads to the same amount of water being available every summer for use by trees."

Researchers also found that the average rock moisture at all wells exceeded the average soil moisture measurements at all locations.

"Soils are important, but when it comes to determining if a place is going to experience water stress, it could be the underlying rock that matters most," Rempe said. "This is the first time this has been demonstrated in a multi-year field study."

The potential for rock moisture to travel back to the atmosphere by evaporation from tree leaves or to trickle down into groundwater indicates that it could affect the environment and climate on a larger scale.

The study provides a glimpse into rock moisture at a small, intensive research site, according to paper co-author William Dietrich of the University of California, Berkeley. He said the data collected during the study should be a starting point for more research. "The future paths are many. Now we have just one well-studied site."

The research was also supported by the Keck Foundation and the University of California Reserve System.
-end-
Find related stories on NSF's Critical Zone Observatorieswebpage.

National Science Foundation

Related Drought Articles:

Sesame yields stable in drought conditions
Research shows adding sesame to cotton-sorghum crop rotations is possible in west Texas
Mapping the effects of drought on vulnerable populations
The greater frequency of droughts, combined with underlying economic, social, and environmental risks means that dry spells have an increasingly destructive impact on vulnerable populations, and particularly on children in the developing world.
Asia's glaciers provide buffer against drought
A new study to assess the contribution that Asia's high mountain glaciers make to relieving water stress in the region is published this week (May 29, 2019) in the journal Nature.
How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.
A faster, more accurate way to monitor drought
A new drought monitoring method developed at Duke University allows scientists to identify the onset of drought sooner, meaning conservation or remediation measures could be put into place sooner.
More Drought News and Drought Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...