Nav: Home

Hidden 'rock moisture' possible key to forest response to drought

February 26, 2018

A little-studied, underground layer of rock may provide a vital reservoir for trees, especially in times of drought, report scientists funded by the National Science Foundation (NSF) and affiliated with The University of Texas (UT) at Austin and the University of California, Berkeley.

The study, published today in the journal Proceedings of the National Academy of Sciences (PNAS), looked at the water stored inside the layer of weathered bedrock that lies under soils in mountain forest ecosystems.

This transitional zone beneath soils and above groundwater is often overlooked when it comes to studying hydrologic processes, but researchers found that the water contained in the fractures and pores of the rock could play an important role in the water cycle at local and global levels.

"There are significant hydrologic dynamics in weathered bedrock environments, but traditionally they are not investigated because they are hard to access," said lead PNAS author Daniella Rempe, a geoscientist at UT Austin. "Our study was designed to investigate this region."

Researchers found that water in bedrock can sustain trees through droughts even after the soil has become parched.

At a field site in Northern California's Mendocino County, scientists found that up to 27 percent of annual rainfall was stored as "rock moisture," the water clinging to cracks and pores in the bedrock.

The impact of rock moisture varies, the researchers said, depending on region and topography. But it likely explains why trees in the study area showed little effect from the severe 2010-2015 drought, which killed more than 100 million trees throughout California.

"How trees can survive extended periods of severe drought has been a mystery," said Richard Yuretich, director of NSF's Critical Zone Observatory (CZO) program. The research was conducted at the NSF Eel River Critical Zone Observatory, one of nine NSF CZO research sites across the country.

"This study reveals a significant reservoir of trapped water that had gone unnoticed in the past," says Yuretich. "Research of this kind can help greatly in managing natural resources during times of environmental stress."

To conduct the study, scientists monitored rock moisture from 2013 to 2016 at nine wells drilled into weathered bedrock along a steep, forested hillside. They used a neutron probe, a precision tool that measures the amount of water in a sample area by detecting hydrogen.

They found that the weathered rock layer built up a supply of 4 to 21 inches of rock moisture during the winter wet season, depending on the well.

The maximum amount of rock moisture in each well stayed about the same throughout the study period, which included a significant drought year. The finding indicates that the total rainfall amount does not influence the rock moisture levels.

"It doesn't matter how much it rains in the winter; rock moisture builds up to the same maximum value," Rempe said. "That leads to the same amount of water being available every summer for use by trees."

Researchers also found that the average rock moisture at all wells exceeded the average soil moisture measurements at all locations.

"Soils are important, but when it comes to determining if a place is going to experience water stress, it could be the underlying rock that matters most," Rempe said. "This is the first time this has been demonstrated in a multi-year field study."

The potential for rock moisture to travel back to the atmosphere by evaporation from tree leaves or to trickle down into groundwater indicates that it could affect the environment and climate on a larger scale.

The study provides a glimpse into rock moisture at a small, intensive research site, according to paper co-author William Dietrich of the University of California, Berkeley. He said the data collected during the study should be a starting point for more research. "The future paths are many. Now we have just one well-studied site."

The research was also supported by the Keck Foundation and the University of California Reserve System.
-end-
Find related stories on NSF's Critical Zone Observatorieswebpage.

National Science Foundation

Related Drought Articles:

Vinegar: A cheap and simple way to help plants fight drought
Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) have discovered a new, yet simple, way to increase drought tolerance in a wide range of plants.
Lending plants a hand to survive drought
A research team led by the Australian National University has found a new way to help plants better survive drought by enhancing their natural ability to preserve water.
New rice fights off drought
Scientists at the RIKEN Center for Sustainable Resource Science (CSRS) have developed strains of rice that are resistant to drought in real-world situations.
Drought linked with human health risks in US analysis
A Yale-led analysis of health claims in 22 US states found that severe drought conditions increased the risk of mortality -- and, in some cases, cardiovascular disease -- among adults 65 or over.
A basis for the application of drought indices in China
The definition of a drought index is the foundation of drought research.
Under the Dead Sea, warnings of dire drought
Nearly 1,000 feet below the bed of the Dead Sea, scientists have found evidence that during past warm periods, the Mideast has suffered drought on scales never recorded by humans -- a possible warning for current times.
Forests worldwide threatened by drought
Forests around the world are at risk of death due to widespread drought, University of Stirling researchers have found.
How much drought can a forest take?
Why do some trees die in a drought and others don't?
Pressures from grazers hastens ecosystem collapse from drought
Ecosystem collapse from extreme drought can be significantly hastened by pressures placed on drought-weakened vegetation by grazers and fungal pathogens, a new Duke-led study finds.
Molecular conductors help plants respond to drought
Salk scientists find key players in complex plant response to stress, offering clues to coping with drier conditions.

Related Drought Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...