Nav: Home

Researchers discover new source of skin defects in eczema

February 26, 2018

Researchers at National Jewish Health have discovered a cause of the dry, inflamed and itchy skin that plagues eczema patients. A team led by Donald Leung, MD, PhD, has shown that an immune system skewed toward allergy alters the lipids in the skin. The altered lipids allow the skin to crack, water to leave and irritants to enter, setting the stage for eczematous lesions to develop. The research, supported by the National Institute of Allergy and Infectious Diseases Atopic Dermatitis Research Network, appeared in the February 22, 2018, issue of the journal JCI Insight.

"We have long known that an activated immune system and a defective skin barrier are both important factors in eczema, but not how they are related and which one drives the disease," said Dr. Leung. "We have now shown that the allergic immune response shortens lipids in the skin, making them less effective at maintaining moisture and more susceptible to irritants."

Eczema, also known as atopic dermatitis, is a chronic skin disease that afflicts an estimated 35 million Americans. It is characterized by patches of itchy, dry and cracked skin, which can profoundly impact patients' lives. Although symptoms mostly involve the skin, an allergic immune response has long been recognized as an important component of the disease.

The researchers first examined skin from eczema patients and found lipids that were shorter than lipids in the skin of participants with no disease. Lipids are waxy substances vital to healthy skin. They help keep allergens, irritants and infections out, while keeping moisture in. Lipids with longer carbon chains are stronger and more water repellant. The shorter lipids prevalent on eczema patients' skin protect the skin less effectively.

Patients' skin cells also produced fewer of the enzymes that lengthen lipid chains. When they added cytokines IL-4 and IL-13 to cultured human skin cells, the allergic immune response kicked into high gear and lipids became shorter. Treatment with those pro-allergic enzymes also reduced expression of lipid-lengthening enzymes. Blocking the activity of IL-4 and IL-13 in the cultured skin cells resulted in an abundance of long-chain lipids.

"Our findings demonstrate how the pro-allergic, type 2 immune response alters lipid formation in the skin, leading to a defective skin barrier and the dry, cracked and itchy skin in eczema," said Dr. Leung.
-end-


National Jewish Health

Related Enzymes Articles:

Fungal enzymes team up to more efficiently break down cellulose
Cost-effectively breaking down bioenergy crops into sugars that can then be converted into fuel is a barrier to commercially producing sustainable biofuels.
How enzymes communicate
Freiburg scientists explain the cell mechanism that transforms electrical signals into chemical ones.
Pac-Man-like CRISPR enzymes have potential for disease diagnostics
UC Berkeley researchers have found 10 new variants of the Cas13a enzyme, the Pac-Man of the CRISPR world, that hold promise for disease diagnostics.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universit├Ąt Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
New studies unravel mysteries of how PARP enzymes work
A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.
Understanding enzymes
A new tool can help researchers more accurately identify enzymes present in microbiomes and quantify their relative abundances.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Research finds enzymes essential for DNA repair
Scientists at The Australian National University and Heidelberg University in Germany have found an essential component in the DNA repair process which could open the door to the development of new cancer drugs.
New step towards clean energy production from enzymes
Oxygen inhibits hydrogenases, a group of enzymes that are able to produce and split hydrogen.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.

Related Enzymes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...