Nav: Home

Study sheds more light on genes' 'on/off' switches

February 26, 2019

It takes just 2 percent of the human genome to code for all of the proteins that make cellular functions -- from producing energy to repairing tissues -- possible.

So what does the other 98 percent do?

A large portion of this so-called noncoding DNA controls the expression of genes, switching them on and off. This regulation is essential because every cell has the same DNA.

In other words, the only thing that makes a muscle cell different from a brain cell is which genes are activated.

It's why University of Michigan scientists are using sophisticated computational methods to investigate how genetic variation in noncoding DNA can increase a person's susceptibility to certain diseases, such as diabetes and cancer.

In a new paper in the journal Genetics, they compare five types of regulatory regions that have been identified in the past few years in an effort to figure out how the regions behave in different types of cells.

"When people try to look at how gene regulation occurs, they look at different epigenomic information using sequencing, trying to understand molecular profiles," says lead author Arushi Varshney, a Ph.D. candidate in human genetics.

Epigenomics refers to changes in the organization of genes caused by factors other than the DNA sequence.

For example, researchers have recently discovered that genetic variants -- the slight variations in DNA that make us unique -- that are associated with diseases tend to lie in areas of the genome that act as gene regulatory elements called enhancers and promoters.

Enhancers boost the rate of transcription of a gene, much like the accelerator in a car, and promoters initiate transcription of a gene, like a car's ignition.

"There were a number of papers coming out describing different classes of gene regulatory elements, and it was not clear how they are related," explains Stephen Parker, Ph.D., assistant professor of computational medicine and bioinformatics and of human genetics.

"Our paper was the first to really compare them," Parker says. "One of the things that came out is that they're all different and act differently in different cell types."

However, the U-M team also discovered that genetic variants in the more cell type-specific enhancers have relatively small effects on their target genes. This could spell trouble for scientists who are comparing thousands of people's genomes to try to locate genetic variation associated with disease traits.

The U-M authors suggest that these genes are so important for a cell's function that their transcription is tightly regulated under normal conditions.

"What it means is we're going to need really large sample sizes to see effects," Parker says.

Another unexpected finding may eventually explain how genetic variation in regulatory elements makes disease more likely.

Varshney, Parker and their colleagues suggest that enhancers and promoters that are cell-specific -- meaning they have bigger effects in certain types of cells -- could make it easier for transcription to occur under certain environmental conditions.

They appear to do this by making the cell's chromatin, the dense protein molecules that the DNA wraps around inside the nucleus of a cell, more accessible.

As a next step in this research, "we think one should look at gene expression of cells under specific conditions," Varshney says. "For example, if you're trying to look at type 2 diabetes, maybe look at cells under high glucose conditions, then look at the gene expression and how genetic variants affect gene expression.

"Then, maybe you would be better able to explain how this genetic variant predisposes you to get a disease."
-end-


Michigan Medicine - University of Michigan

Related Dna Articles:

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab