Nav: Home

New clue for cancer treatment could be hiding in microscopic molecular machine

February 26, 2019

TALLAHASSEE, Fla. -- Buried deep within the dazzlingly intricate machinery of the human cell could lie a key to treating a range of deadly cancers, according to a team of scientists at Florida State University.

In a new study, researchers discovered a critical missing step in the production of proteasomes -- tiny structures in a cell that dispose of protein waste -- and found that carefully targeted manipulation of this step could prove an effective recourse for the treatment of cancer.

Their findings were published in the journal Cell Reports.

"Proteasomes are kind of like the cell's recycling center for proteins," said study co-author Robert Tomko, an assistant professor of biomedical sciences in FSU's College of Medicine. "Typically, proteins inside the cell are produced to fulfill a certain function, and once that function is fulfilled, they are no longer needed and need to be removed."

Proteasomes collect those unneeded, damaged or defective proteins and decompose them into amino acid building blocks, which are subsequently repurposed for the production of new proteins. Proteasomes are assembled from more than 60 protein subunits, "however, they don't just form spontaneously from these parts," Tomko said.

"They require assistance from dedicated helper proteins called assembly chaperones," he said. "These chaperones act as factory workers to build proteasomes. Once the proteasome is built, the chaperones have to release it so that it can function properly and they can then begin work on the next one."

It's this stage of the assembly process -- the chaperone's release of the fully completed proteasome -- that interested Tomko and his team. Before their study, the signaling mechanisms responsible for triggering the release of assembled proteasomes was a mystery, limiting scientists' understanding of the critical final phase of proteasome assembly.

Tomko's group found that the answer to this puzzle has to do with a strange feat of molecular contortion. When a proteasome is nearly finished assembling, it temporarily changes its shape, making room for the chaperone protein as the proteasome's final building blocks are linked together. When assembly is complete, the proteasome suddenly snaps back into its original shape, crowding out the chaperone protein and eventually popping it entirely free.

"This finding explains how this seemingly impossible process happens, and importantly, it suggests that by controlling it, we could regulate proteasome assembly to help treat certain types of cancers," Tomko said.

Cancer cells, just like healthy cells, rely on proteasomes to collect and dispense with toxic proteins. Because cancer cells produce large amounts of damaged proteins, they compensate by overproducing proteasome assembly chaperones, which build more proteasomes to meet the cancer cells' needs. These fleets of diligent proteasome cleanup crews keep the cancer cells from self-destructing and allow them to propagate more effectively.

In addition, the specific chaperone protein Tomko and his team studied, called gankyrin, is an oncogene -- a piece of genetic material that is present at elevated levels in some tumors and has been shown to promote cancer growth.

Tomko said that if scientists can devise a way of interfering with the "popping off" of gankyrin chaperone proteins from assembling proteasomes, they may be able to mitigate the cancer-causing effects of gankyrin while also condemning harmful cancer cells to death by their own toxic proteins.

"First, we can trap gankyrin and prevent it from performing its pro-cancer functions," he said. "Second, by trapping gankyrin and preventing completion of proteasome assembly, we can sensitize these cancer cells to the toxic, damaged proteins they are already overproducing. Gankyrin is important for several types of cancer, including liver, colon and cervical, so this approach might help to treat cancers of multiple organ types."

The next step, Tomko said, is to confirm that trapping gankyrin is toxic to cancer cells but nontoxic to healthy cells. If this is found to be the case, he and his team could begin developing candidate drugs for preclinical testing.
-end-
Tomko and FSU researcher Antonia Nemec spearheaded the study, with additional contributions from graduate students Randi Reed and Jennifer Warnock and FSU researcher Anna Peterson. The research was funded by the Florida State University College of Medicine and The National Institutes of Health.

Florida State University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".