ALS mystery illuminated by blue light

February 26, 2020

A joint research group in Japan has succeeded in reproducing key ALS symptoms in a small tropical fish by remote controlling a disease-associated protein molecule using light illumination.

In amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or motor neuron disease, nerve cells called motor neurons progressively degenerate. These motor neurons accumulate inclusions containing an aggregated form of TDP-43 protein.

In human body, motor neurons align along the spinal cord length and extend along the cables called axons to connect with muscles covering the body surface. This anatomical feature makes motor neurons one of the most difficult cells to observe. Consequently, we do not fully understand when and how healthy motor neurons begin to become abnormal and pathological in ALS.

In a study published last week in the journal Nature Communications, the authors devised a new TDP-43 variant by attaching human TDP-43 to a plant protein that forms protein aggregates upon absorption of blue light. This light-controlled or "optogenetic" TDP-43 functions normally as TDP-43 in the dark, but it gradually forms aggregates when illuminated by blue light. The authors focused on the motor neurons of zebrafish because they share several characteristics with human motor neurons. Whole cell can be visualized because of the transparent fish body (Figure). Employing their own original techniques, the authors expressed the optogenetic TDP-43 in zebrafish motor neurons and discovered that key ALS pathologies appeared when the fish were simply illuminated by blue light (Movie).

Unexpectedly, the connection between the motor neurons and muscles weakened even when light illumination was ceased and before the optogenetic TDP-43 was aggregated. This result suggests that motor neurons are already damaged before TDP-43 develops into typically large aggregates that are observed in the terminal phase of ALS.

Dr Asakawa, who spearheaded this research, said, "This research, for the first time, shows that TDP-43 aggregation is a cause of motor neuron dysfunction in animals. We think that the small TDP-43 assemblies, which are called TDP-43 oligomers, might be more toxic to motor neurons than the larger aggregates."

He continued "We can now produce an ALS-like state in a temporary and spatially tuned manner by controlling light intensity and the position of illumination. Our ultimate goal over the next few years is to identify chemicals that prevent optogenetic TDP-43 from forming oligomers and aggregates, and we hope such chemicals will be used for ALS treatment."

*****

This research was conducted collaboratively between Tokyo Medical University (Kazuhide Asakawa, Hiroshi Handa) and National Institute of Genetics (Koichi Kawakami), and it was supported by SERIKA FUND, The Nakabayashi Trust for ALS Research, THE KATO MEMORIAL TRUST FOR NAMBYO RESEARCH, Daiichi-Sankyo Foundation of Life Science, Takeda Science Foundation, KAKENHI Grant numbers JP16K07045, JP19K06933, JP15H02370, and National BioResource Project from Japan Agency for Medical Research and Development (AMED).
-end-
About the Research Organization of Information and Systems (ROIS) ROIS is a parent organization of four national institutes (National Institute of Polar Research, National Institute of Informatics, the Institute of Statistical Mathematics and National Institute of Genetics) and the Joint Support-Center for Data Science Research. It is ROIS's mission to promote integrated, cutting-edge research that goes beyond the barriers of these institutions, in addition to facilitating their research activities, as members of inter-university research institutes.

About National Institute of Genetics (NIG) National Institute of Genetics (NIG) was established to carry out broad and comprehensive research in genetics. NIG contributes to the development of academic research as one of the inter-university research institutes constituting the Research Organization of Information and Systems (ROIS).

About Tokyo Medical University Founded in 1916 in the Shinjuku area of Tokyo, Tokyo Medical University now boasts a history of more than 100 years. A new school of nursing was added to its Faculty of Medicine in 2013, and it also offers both Doctorate and Masters degrees at its Graduate School of Medicine. As such, it continues to produce many fine young doctors, nurses, and researchers.
-end-


Research Organization of Information and Systems

Related Motor Neurons Articles from Brightsurf:

Spinal injuries: the recovery of motor skills thanks to nanomaterials
Re-establishing motor skills and neuronal connectivity thanks to the implantation of carbon nanotubes in the injury site.

The smallest motor in the world
A research team from Empa and EPFL has developed a molecular motor which consists of only 16 atoms and rotates reliably in one direction.

Mechanism behind upper motor degeneration revealed
Scientists have pinpointed the electrophysiological mechanism behind upper motor neuron disease, unlocking the door to potential treatments for amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, such as Hereditary Spastic Paraplegia and Primary Lateral Sclerosis.

Synergy emergence in deep reinforcement motor learning
Human motor control has always been efficient at executing complex movements naturally, efficiently, and without much thought involved.

How your brain remembers motor sequences
Researchers at the National Institute of Information and Communications Technology (NICT), Japan, and Western University, Canada, have succeeded in visualizing how information is represented in a widespread area in the human cerebral cortex during a performance of skilled finger movement sequences.

Tiny motor can 'walk' to carry out tasks
MIT researchers have assembled microrobots from a small set of standardized components, as a step toward self-replicating systems.

Statins could protect against motor neurone disease
High cholesterol has been found to be a possible risk factor for the development of motor neurone disease (MND), according to a large study of genetic data led in the UK by Queen Mary University of London, in collaboration with the National Institutes of Health in the USA.

Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.

Motor learning for precise motor execution
Scientists at Tokyo Metropolitan Institute of Medical Science, RIKEN, National Center of Neurology and Psychiatry, Nozomi Hospital and Tokyo Medical and Dental University have identified acquisition of two types of internal models for motor control, which are likely to be stored in the cerebellum.

Molecular motor: Four states of rotation
With the help of ultrafast spectroscopy and quantum mechanical calculations, Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have characterized the complete rotational cycle of the light-driven, chemical motor molecule hemithioindigo.

Read More: Motor Neurons News and Motor Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.