HKUST scientists shed light on COVID-19 vaccine development

February 26, 2020

A team of scientists at the Hong Kong University of Science and Technology (HKUST) has recently made an important discovery in identifying a set of potential vaccine targets for the SARS-CoV-2 coronavirus, providing crucial leads for guiding experimental efforts towards the vaccine development against the novel pneumonia (COVID-19) caused by the virus.

Like SARS-CoV, which caused the SARS (Severe Acute Respiratory Syndrome) outbreak in 2003, SARS-CoV-2 belongs to the same Betacoronavirus genus. By considering the genetic similarity between SARS-CoV-2 and SARS-CoV, the team leveraged experimentally-determined immunological data to identify a set of SARS-CoV- derived B cell and T cell epitopes that exactly match to SARS-CoV-2. Epitopes are biomarkers recognized by the immune system to trigger actions against the virus. As no mutation has been observed in the identified epitopes among the available SARS-CoV-2 genetic sequences, immune targeting of these epitopes may potentially offer protection against the novel pneumonia COVID-19.

The team, led by data scientists Prof. Matthew McKay and Dr. Ahmed Abdul Quadeer, expected that their work can assist in guiding experimental research towards the development of effective vaccines against SARS- CoV-2.

Prof. McKay highlighted that "Despite similarities between SARS-CoV and SARS-CoV-2, there is genetic variation between the two, and it is not obvious if epitopes that elicit an immune response against SARS-CoV will likely be effective against SARS-CoV-2. We found that only roughly 20% of the SARS-CoV epitopes map identically to SARS-CoV-2, and believe these are promising candidates."

"For the identified T cell epitopes, we also performed a population coverage analysis and determined a set of epitopes that is estimated to provide broad coverage globally as well as in China" said Dr. Quadeer. The estimated population coverage represents the percentage of individuals within the selected population that are likely to elicit an immune response to at least one epitope from the identified set.

Prof. McKay is a Professor in the Departments of Electronic & Computer Engineering and Chemical & Biological Engineering; Dr. Quadeer is a post-doctoral fellow in the Department of Electronic & Computer Engineering. Their findings were recently published in the scientific journal Viruses this month.

"Our objective was to try to assist with the initial phase of vaccine development, by providing recommendations of specific epitopes that may potentially be considered for incorporation in vaccine designs" Prof. McKay added. "More generally, our work is part of a global effort seeking to capitalize on data for COVID-19, made available and rapidly shared by the scientific community, to understand this new virus and come up with effective interventions."

The beginning of 2020 has seen the emergence of SARS-CoV-2 outbreak in mainland China, which has quickly spread to over 30 countries around the world, infecting over 80,000 people and causing over 2,600 deaths as of late February 2020.

Hong Kong University of Science and Technology

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to